Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin

Abstract

The autoimmune regulator Aire is expressed in a small proportion of medullary thymic epithelial cells (mTECs) and is crucial in the induction of central T cell tolerance. The origin and development of Aire+ mTECs, however, are not well understood. Here we demonstrate that the tight-junction components claudin-3 and claudin-4 (Cld3,4) were 'preferentially' expressed in Aire+ mTECs. In early ontogeny, Cld3,4hi TECs derived from the most apical layer of the stratified thymic anlage first expressed known mTEC markers such as UEA-1 ligand and MTS10. We provide evidence that such Cld3,4hi UEA-1+ TECs represented the initial progenitors specified for Aire+ mTECs, whose development crucially required NF-κB-inducing kinase and the adaptor molecule TRAF6. Our results suggest that Aire+ mTECs represent terminally differentiated cells in a unique lineage arising during thymic organogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of tight-junction components in a small population of mTECs.
Figure 2: Cld3,4+ TECs express Aire and large amounts of MHC class II and costimulatory molecules.
Figure 3: Expression of Cld3,4 marks the origin and development of mTECs during ontogeny.
Figure 4: C-CPEhi UEA-1+ TECs develop earlier but proliferate more slowly during embryonic ontogeny than do C-CPElo UEA-1+ TECs.
Figure 5: C-CPEhi UEA-1+ TECs sorted at E13.5 'preferentially' generate Cld3,4+ MTS10 mTECs expressing Aire.
Figure 6: Cld3,4+ Aire+ mTECs arise from C-CPEhi UEA-1+ TECs at E13.5 with cell proliferation.
Figure 7: Embryonic development of Cld3,4+ mTECs is profoundly impaired in aly/aly and TRAF6-deficient mice.

Similar content being viewed by others

References

  1. van Ewijk, W. et al. Thymic microenvironments, 3-D versus 2-D? Semin. Immunol. 11, 57–64 (1999).

    Article  CAS  Google Scholar 

  2. Gill, J. et al. Thymic generation and regeneration. Immunol. Rev. 195, 28–50 (2003).

    Article  CAS  Google Scholar 

  3. Blackburn, C.C. & Manley, N.R. Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 4, 278–289 (2004).

    Article  CAS  Google Scholar 

  4. Anderson, G., Owen, J.J., Moore, N.C. & Jenkinson, E.J. Thymic epithelial cells provide unique signals for positive selection of CD4+CD8+ thymocytes in vitro. J. Exp. Med. 179, 2027–2031 (1994).

    Article  CAS  Google Scholar 

  5. Petrie, H.T. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat. Rev. Immunol. 3, 859–866 (2003).

    Article  CAS  Google Scholar 

  6. Takahama, Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat. Rev. Immunol. 6, 127–135 (2006).

    Article  CAS  Google Scholar 

  7. Kyewski, B. & Klein, L. A central role for central tolerance. Annu. Rev. Immunol. 24, 571–606 (2006).

    Article  CAS  Google Scholar 

  8. Farr, A.G., Dooley, J.L. & Erickson, M. Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation. Immunol. Rev. 189, 20–27 (2002).

    Article  CAS  Google Scholar 

  9. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  10. Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202, 33–45 (2005).

    Article  CAS  Google Scholar 

  11. Bennett, A.R. et al. Identification and characterization of thymic epithelial progenitor cells. Immunity 16, 803–814 (2002).

    Article  CAS  Google Scholar 

  12. Gill, J., Malin, M., Hollander, G.A. & Boyd, R. Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nat. Immunol. 3, 635–642 (2002).

    Article  CAS  Google Scholar 

  13. Rossi, S.W., Jenkinson, W.E., Anderson, G. & Jenkinson, E.J. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441, 988–991 (2006).

    Article  CAS  Google Scholar 

  14. Gillard, G.O. & Farr, A.G. Contrasting models of promiscuous gene expression by thymic epithelium. J. Exp. Med. 202, 15–19 (2005).

    Article  CAS  Google Scholar 

  15. Hollander, G.A. et al. Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373, 350–353 (1995).

    Article  CAS  Google Scholar 

  16. van Ewijk, W., Hollander, G., Terhorst, C. & Wang, B. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127, 1583–1591 (2000).

    CAS  PubMed  Google Scholar 

  17. Itoi, M., Kawamoto, H., Katsura, Y. & Amagai, T. Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int. Immunol. 13, 1203–1211 (2001).

    Article  CAS  Google Scholar 

  18. Gordon, J. et al. Functional evidence for a single endodermal origin for the thymic epithelium. Nat. Immunol. 5, 546–553 (2004).

    Article  CAS  Google Scholar 

  19. Tsukita, S., Furuse, M. & Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2, 285–293 (2001).

    Article  CAS  Google Scholar 

  20. Klug, D.B. et al. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc. Natl. Acad. Sci. USA 95, 11822–11827 (1998).

    Article  CAS  Google Scholar 

  21. Sonoda, N. et al. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. J. Cell Biol. 147, 195–204 (1999).

    Article  Google Scholar 

  22. Kajiura, F. et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J. Immunol. 172, 2067–2075 (2004).

    Article  CAS  Google Scholar 

  23. Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251 (2005).

    Article  CAS  Google Scholar 

  24. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  Google Scholar 

  25. Kyewski, B. & Derbinski, J. Self-representation in the thymus: an extended view. Nat. Rev. Immunol. 4, 688–698 (2004).

    Article  CAS  Google Scholar 

  26. Aaltonen, J. et al. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17, 399–403 (1997).

    Article  Google Scholar 

  27. Nagamine, K. et al. Positional cloning of the APECED gene. Nat. Genet. 17, 393–398 (1997).

    Article  CAS  Google Scholar 

  28. Ramsey, C. et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11, 397–409 (2002).

    Article  CAS  Google Scholar 

  29. Kuroda, N. et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J. Immunol. 174, 1862–1870 (2005).

    Article  CAS  Google Scholar 

  30. Zhang, M. et al. T cell tolerance to a neo-self antigen expressed by thymic epithelial cells: the soluble form is more effective than the membrane-bound form. J. Immunol. 170, 3954–3962 (2003).

    Article  CAS  Google Scholar 

  31. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    Article  CAS  Google Scholar 

  32. Gillard, G.O. & Farr, A.G. Features of medullary thymic epithelium implicate postnatal development in maintaining epithelial heterogeneity and tissue-restricted antigen expression. J. Immunol. 176, 5815–5824 (2006).

    Article  CAS  Google Scholar 

  33. Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156, 1099–1111 (2002).

    Article  CAS  Google Scholar 

  34. Tsukita, S. & Furuse, M. Claudin-based barrier in simple and stratified cellular sheets. Curr. Opin. Cell Biol. 14, 531–536 (2002).

    Article  CAS  Google Scholar 

  35. Rodewald, H.R., Paul, S., Haller, C., Bluethmann, H. & Blum, C. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414, 763–768 (2001).

    Article  CAS  Google Scholar 

  36. Bleul, C.C. et al. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441, 992–996 (2006).

    Article  CAS  Google Scholar 

  37. Chin, R.K. et al. Lymphotoxin pathway directs thymic Aire expression. Nat. Immunol. 4, 1121–1127 (2003).

    Article  CAS  Google Scholar 

  38. Boehm, T., Scheu, S., Pfeffer, K. & Bleul, C.C. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTβR. J. Exp. Med. 198, 757–769 (2003).

    Article  CAS  Google Scholar 

  39. Zuklys, S. et al. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Immunol. 165, 1976–1983 (2000).

    Article  CAS  Google Scholar 

  40. Burkly, L. et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373, 531–536 (1995).

    Article  CAS  Google Scholar 

  41. Weih, F. et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell 80, 331–340 (1995).

    Article  CAS  Google Scholar 

  42. Furuse, M., Sasaki, H., Fujimoto, K. & Tsukita, S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143, 391–401 (1998).

    Article  CAS  Google Scholar 

  43. Kobayashi, T. et al. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 19, 353–363 (2003).

    Article  CAS  Google Scholar 

  44. Ishida, M. et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol. Lett. 84, 57–62 (2002).

    Article  CAS  Google Scholar 

  45. Niki, S. et al. Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. J. Clin. Invest. 116, 1292–1301 (2006).

    Article  CAS  Google Scholar 

  46. Liston, A. et al. Gene dosage–limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J. Exp. Med. 200, 1015–1026 (2004).

    Article  CAS  Google Scholar 

  47. Katahira, J., Inoue, N., Horiguchi, Y., Matsuda, M. & Sugimoto, N. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J. Cell Biol. 136, 1239–1247 (1997).

    Article  CAS  Google Scholar 

  48. Gray, D.H., Chidgey, A.P. & Boyd, R.L. Analysis of thymic stromal cell populations using flow cytometry. J. Immunol. Methods 260, 15–28 (2002).

    Article  CAS  Google Scholar 

  49. Hamazaki, Y., Itoh, M., Sasaki, H., Furuse, M. & Tsukita, S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J. Biol. Chem. 277, 455–461 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Tsukita and M. Furuse for providing claudin-transfected L cells; Y. Horiguchi (Research Institute for Microbial Diseases, Osaka University) for the C-CPE plasmid; H. Kawamoto and K. Masuda for discussions; and W.T.V. Germeraad for proofreading the manuscript. Supported by the Ministry of Education, Culture, Science, Sports and Technology of the Japanese government and Shimizu Foundation for Immunology Research.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. principally contributed to general experiments and design; H.F. contributed to flow cytometry; T.K. and Y.C. contributed to TRAF6-deficient mice; H.S. contributed to rat monoclonal antibodies to mouse Aire; M.M. contributed to Aire-deficient mice and discussions; and N.M. provided the overall design of the work.

Corresponding author

Correspondence to Nagahiro Minato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Specific binding of recombinant C-CPE to claudin-3, 4 on the epithelial cell surface. (PDF 341 kb)

Supplementary Fig. 2

Rare Cld3, 4 Aire+ cells express CD11c. (PDF 533 kb)

Supplementary Fig. 3

Phenotypes of the sorted fractions from the B6 thymic stroma cells at E13.5. (PDF 560 kb)

Supplementary Fig. 4

Anti-H-2Kb antibody specifically detects both B6 donor-derived mTECs and cTECs in the reconstituted thymus. (PDF 991 kb)

Supplementary Fig. 5

Transfer of the Cld3,4low TECs at E13.5 results in the generation of all types of TECs including Cld3,4high Aire+ mTECs. (PDF 1473 kb)

Supplementary Table 1

PCR primers. (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamazaki, Y., Fujita, H., Kobayashi, T. et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8, 304–311 (2007). https://doi.org/10.1038/ni1438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing