Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication

Abstract

DC-SIGN, a C-type lectin expressed on dendritic cells (DCs), can sequester human immunodeficiency virus (HIV) virions in multivesicular bodies. Here, using large-scale gene expression profiling and tyrosine-phosphorylated proteome analyses, we characterized signaling mediated by DC-SIGN after activation by either HIV or a DC-SIGN-specific antibody. Activation of DC-SIGN resulted in downregulation of genes encoding major histocompatibility complex class II, Jagged 1 and interferon-response molecules and upregulation of the gene encoding transcription factor ATF3. Phosphorylated proteome analysis showed that HIV- or antibody-stimulated DC-SIGN signaling was mediated by the Rho guanine nucleotide–exchange factor LARG and led to increased Rho-GTPase activity. Activation of LARG in DCs exposed to HIV was required for the formation of virus–T cell synapses. Thus, HIV sequestration by and stimulation of DC-SIGN helps HIV evade immune responses and spread to cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H-200 and HIV-1 stimulate DC-SIGN signaling in a similar way.
Figure 2: DC-SIGN large-scale gene expression profile.
Figure 3: Identification of proteins tyrosine-phosphorylated after DC-SIGN triggering.
Figure 4: DC-SIGN stimulation induces Rho activity via LARG.
Figure 5: Active Rho and DC-SIGN form a complex after stimulation of DC-SIGN.
Figure 6: HIV uses DC-SIGN signaling to facilitate immune synapse formation.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  2. Oda, K. & Kitano, H. A comprehensive map of the Toll-like receptor signaling network. Mol. Syst. Biol. 2, 2006.0015 (2006).

    Article  Google Scholar 

  3. Cambi, A. & Figdor, C.G. Levels of complexity in pathogen recognition by C-type lectins. Curr. Opin. Immunol. 17, 345–351 (2005).

    Article  CAS  Google Scholar 

  4. McGreal, E.P., Miller, J.L. & Gordon, S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol. 17, 18–24 (2005).

    Article  CAS  Google Scholar 

  5. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  Google Scholar 

  6. Rogers, N.C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005).

    Article  CAS  Google Scholar 

  7. Geijtenbeek, T.B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).

    Article  CAS  Google Scholar 

  8. van Kooyk, Y. & Geijtenbeek, T.B. DC-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol. 3, 697–709 (2003).

    Article  CAS  Google Scholar 

  9. Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  Google Scholar 

  10. Turville, S.G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol. 3, 975–983 (2002).

    Article  CAS  Google Scholar 

  11. Garcia, E. et al. HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6, 488–501 (2005).

    Article  CAS  Google Scholar 

  12. Turville, S.G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).

    Article  CAS  Google Scholar 

  13. Moris, A. et al. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood 103, 2648–2654 (2004).

    Article  CAS  Google Scholar 

  14. Arrighi, J.F. et al. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J. Virol. 78, 10848–10855 (2004).

    Article  CAS  Google Scholar 

  15. Arrighi, J.F. et al. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J. Exp. Med. 200, 1279–1288 (2004).

    Article  CAS  Google Scholar 

  16. Caparros, E. et al. DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 107, 3950–3958 (2006).

    Article  CAS  Google Scholar 

  17. Dillon, S. et al. Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172, 4733–4743 (2004).

    Article  CAS  Google Scholar 

  18. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1–polarizing program in dendritic cells. Nat. Immunol. 6, 769–776 (2005).

    Article  CAS  Google Scholar 

  19. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  Google Scholar 

  20. Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101 (2005).

    Article  CAS  Google Scholar 

  21. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M. & Mann, M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477 (2005).

    Article  CAS  Google Scholar 

  22. Benvenuti, F. et al. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305, 1150–1153 (2004).

    Article  CAS  Google Scholar 

  23. Eun, S.Y. Cutting edge: rho activation and actin polarization are dependent on plexin-A1 in dendritic cells. J. Immunol. 177, 4271–4275 (2006).

    Article  CAS  Google Scholar 

  24. Deckert, M., Moon, C. & Le Bras, S. The immunological synapse and Rho GTPases. Curr. Top. Microbiol. Immunol. 291, 61–90 (2005).

    CAS  PubMed  Google Scholar 

  25. Lore, K. et al. Accumulation of DC-SIGN+CD40+ dendritic cells with reduced CD80 and CD86 expression in lymphoid tissue during acute HIV-1 infection. AIDS 16, 683–692 (2002).

    Article  Google Scholar 

  26. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F.P. & Steinman, R.M. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc. Natl. Acad. Sci. USA 101, 7669–7674 (2004).

    Article  CAS  Google Scholar 

  27. Harman, A.N. et al. HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J. Immunol. 177, 7103–7113 (2006).

    Article  CAS  Google Scholar 

  28. Moris, A. et al. Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 108, 1643–1651 (2006).

    Article  CAS  Google Scholar 

  29. Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  Google Scholar 

  30. Tao, L. et al. Opposing roles of serine/threonine kinases MEKK1 and LOK in regulating the CD28 responsive element in T-cells. Biochem. J. 2363, 175–182 (2002).

    Article  Google Scholar 

  31. Swetman, C.A. et al. Extension, retraction and contraction in the formation of a dendritic cell dendrite: distinct roles for Rho GTPases. Eur. J. Immunol. 32, 2074–2083 (2002).

    Article  CAS  Google Scholar 

  32. Loomis, R.J. et al. Citron kinase, a RhoA effector, enhances HIV-1 virion production by modulating exocytosis. Traffic 7, 1643–1653 (2006).

    Article  CAS  Google Scholar 

  33. Mitsushima, M., Suwa, A., Amachi, T., Ueda, K. & Kioka, N. Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin. J. Biol. Chem. 279, 34570–34577 (2004).

    Article  CAS  Google Scholar 

  34. Suwa, A. et al. Vinexin β regulates the anchorage dependence of ERK2 activation stimulated by epidermal growth factor. J. Biol. Chem. 277, 13053–13058 (2002).

    Article  CAS  Google Scholar 

  35. Turville, S.G. et al. HIV gp120 receptors on human dendritic cells. Blood 98, 2482–2488 (2001).

    Article  CAS  Google Scholar 

  36. Jefford, M. et al. Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood 102, 1753–1763 (2003).

    Article  CAS  Google Scholar 

  37. Granelli-Piperno, A. et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J. Immunol. 175, 4265–4273 (2005).

    Article  CAS  Google Scholar 

  38. Brenchley, J.M. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 200, 749–759 (2004).

    Article  CAS  Google Scholar 

  39. Kinther, M. & Sherman, N.E. Protein Sequencing and Identification Using Tandem Mass Spectrometry (John Wiley, New York, 2000).

    Book  Google Scholar 

  40. Batycka, M. et al. Ultra-fast tandem mass spectrometry scanning combined with monolithic column liquid chromatography increases throughput in proteomic analysis. Rapid Commun. Mass Spectrom. 20, 2074–2080 (2006).

    Article  CAS  Google Scholar 

  41. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

    Article  CAS  Google Scholar 

  42. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  43. Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  Google Scholar 

  44. Wu, Z. & Irizarry, R.A. Preprocessing of oligonucleotide array data. Nat. Biotechnol. 22, 656–658 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Luhn for technical assistance and T. Brode for earlier work on the project. Anti-p24 was from M.H. Malim (through the AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health). Supported by the UK Medical Research Council (A.S., K.S. and B.K.).

Author information

Authors and Affiliations

Authors

Contributions

A.H., K.S. and A.S., designed the study, did experiments, analyzed the data and wrote the paper; H.D. made HIV-1 viral stocks; M.E. and B.K. did and analyzed LC-tandem mass spectometry and proteomic experiments; D.B. and K.D. did and analyzed microarray experiments; A. Moris and O.S. provided DC-SIGN THP-1 stable transfectants; and A. McMichael, B.K., A. Moris and O.S. provided additional intellectual input.

Corresponding author

Correspondence to Alison Simmons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Panel of DC-SIGN antibodies tested for signaling but showing undetectable changes following western blot with anti-phosphotyrosine or anti-phosphoserine. (PDF 64 kb)

Supplementary Fig. 2

Thp-1 DC-SIGN transfectants THP-1 + LL/AA and THP-1 + WT tested for signaling induced by H-200 prior to blocking with IB10 non-signaling anti-DC-SIGN. (PDF 48 kb)

Supplementary Table 1

DC-SIGN transcriptional program: selected genes differentially regulated. (PDF 20 kb)

Supplementary Table 2

Summary of differentially phosphorylated proteins. (PDF 23 kb)

Supplementary Table 3

Proteins exclusively phosphorylated following DC-SIGN activation. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodges, A., Sharrocks, K., Edelmann, M. et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8, 569–577 (2007). https://doi.org/10.1038/ni1470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing