Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis

Abstract

The self-encoded ligands MICA (human) and Rae-1 (mouse) for the cytotoxic lymphocyte activating receptor NKG2D are highly expressed in carcinomas and inflammatory lesions and have been linked to immunosurveillance and graft rejection. However, whether NKG2D ligands have an intrinsic ability to acutely regulate tissue-associated immune compartments is not known. Here we show that epidermis-specific upregulation of Rae-1 induced rapid, coincident and reversible changes in the organization of tissue-resident Vγ5Vδ1 TCRγδ+ intraepithelial T cells and Langerhans cells, swiftly followed by epithelial infiltration by unconventional αβ T cells. Whereas local Vγ5Vδ1+ T cells limited carcinogenesis, Langerhans cells unexpectedly promoted it. These results provide unique insight into the early phases of tissue immunosurveillance and indicate that acute changes in NKG2D ligands may alone initiate a rapid, multifaceted immunosurveillance response in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inducible transgenic expression of Rae-1 in the epidermis, where NKG2D is constitutively expressed by resident DETCs.
Figure 2: Acute upregulation of Rae-1 in the epidermis induces morphological and activational changes in both Langerhans cell and DETC compartments in vivo.
Figure 3: TCRαβ+ cells rapidly infiltrate the epidermis after upregulation of Rae-1.
Figure 4: Epidermis-infiltrating TCRαβ+ cells differ from conventional circulating αβ T cells and all express NK cell markers.
Figure 5: Mice selectively deficient in the prototypic Vγ5Vδ1+ DETCs are more susceptible to tumor development.
Figure 6: Mice deficient in Langerhans cells are protected from tumor development.

Similar content being viewed by others

References

  1. Smyth, M.J., Dunn, G.P. & Schreiber, R.D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol. 90, 1–50 (2006).

    Article  CAS  Google Scholar 

  2. Qin, Z. & Blankenstein, T. A cancer immunosurveillance controversy. Nat Immunol 5, 3–4 (2004).

    Article  CAS  Google Scholar 

  3. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  Google Scholar 

  4. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  5. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  Google Scholar 

  6. Girardi, M. et al. The distinct contributions of murine T cell receptor (TCR) γδ+ and TCR αβ+ T cells to different stages of chemically induced skin cancer. J. Exp. Med. 198, 747–755 (2003).

    Article  CAS  Google Scholar 

  7. Wilhelm, M. et al. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 102, 200–206 (2003).

    Article  CAS  Google Scholar 

  8. Dieli, F. et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 67, 7450–7457 (2007).

    Article  CAS  Google Scholar 

  9. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  Google Scholar 

  10. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  11. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  Google Scholar 

  12. Carayannopoulos, L.N., Naidenko, O.V., Fremont, D.H. & Yokoyama, W.M. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  Google Scholar 

  13. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  Google Scholar 

  14. Gasser, S., Orsulic, S., Brown, E.J. & Raulet, D.H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  Google Scholar 

  15. Rolle, A. et al. Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J. Immunol. 171, 902–908 (2003).

    Article  Google Scholar 

  16. Zou, Y., Stastny, P., Susal, C., Dohler, B. & Opelz, G. Antibodies against MICA antigens and kidney-transplant rejection. N. Engl. J. Med. 357, 1293–1300 (2007).

    Article  CAS  Google Scholar 

  17. Ogasawara, K. et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20, 757–767 (2004).

    Article  CAS  Google Scholar 

  18. Groh, V., Bruhl, A., El-Gabalawy, H., Nelson, J.L. & Spies, T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 100, 9452–9457 (2003).

    Article  CAS  Google Scholar 

  19. Smyth, M.J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med. 202, 583–588 (2005).

    Article  CAS  Google Scholar 

  20. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  Google Scholar 

  21. Dunn, G.P., Old, L.J. & Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  Google Scholar 

  22. Wiemann, K. et al. Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J. Immunol. 175, 720–729 (2005).

    Article  CAS  Google Scholar 

  23. Oppenheim, D.E. et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat. Immunol. 6, 928–937 (2005).

    Article  CAS  Google Scholar 

  24. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6, 163–170 (2005).

    Article  Google Scholar 

  25. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. & Ruco, L. The origin and function of tumor-associated macrophages. Immunol. Today 13, 265–270 (1992).

    Article  CAS  Google Scholar 

  26. Roberts, S.J. et al. Characterizing tumor-promoting T cells in chemically induced cutaneous carcinogenesis. Proc. Natl. Acad. Sci. USA 104, 6770–6775 (2007).

    Article  CAS  Google Scholar 

  27. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  28. Born, W. et al. Immunoregulatory functions of γδ T cells. Adv. Immunol. 71, 77–144 (1999).

    Article  CAS  Google Scholar 

  29. Girardi, M. et al. Resident skin-specific γδ T cells provide local, nonredundant regulation of cutaneous inflammation. J. Exp. Med. 195, 855–867 (2002).

    Article  CAS  Google Scholar 

  30. Kaplan, D.H., Jenison, M.C., Saeland, S., Shlomchik, W.D. & Shlomchik, M.J. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611–620 (2005).

    Article  CAS  Google Scholar 

  31. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  32. Graham, D.B. et al. Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics. J. Immunol. 177, 2349–2355 (2006).

    Article  CAS  Google Scholar 

  33. Nishibu, A. et al. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J. Invest. Dermatol. 126, 787–796 (2006).

    Article  CAS  Google Scholar 

  34. Jameson, J.M., Cauvi, G., Witherden, D.A. & Havran, W.L. A keratinocyte-responsive γδ TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J. Immunol. 172, 3573–3579 (2004).

    Article  CAS  Google Scholar 

  35. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  Google Scholar 

  36. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  Google Scholar 

  37. Miller, S.J. et al. Mouse skin is particularly susceptible to tumor initiation during early anagen of the hair cycle: possible involvement of hair follicle stem cells. J. Invest. Dermatol. 101, 591–594 (1993).

    Article  CAS  Google Scholar 

  38. Trempus, C.S. et al. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res. 67, 4173–4181 (2007).

    Article  CAS  Google Scholar 

  39. Mallick-Wood, C.A. et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279, 1729–1733 (1998).

    Article  CAS  Google Scholar 

  40. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005).

    Article  CAS  Google Scholar 

  41. Schreiber, R.D., Old, L.J., Hayday, A.C. & Smyth, M.J. Response to 'A cancer immunosurveillance controversy'. Nat. Immunol. 5, 4–5 (2004).

    Article  CAS  Google Scholar 

  42. Bonish, B. et al. Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-γ production by NK-T cells. J. Immunol. 165, 4076–4085 (2000).

    Article  CAS  Google Scholar 

  43. Cameron, A.L., Kirby, B., Fei, W. & Griffiths, C.E. Natural killer and natural killer-T cells in psoriasis. Arch. Dermatol. Res. 294, 363–369 (2002).

    Article  CAS  Google Scholar 

  44. Moodycliffe, A.M., Nghiem, D., Clydesdale, G. & Ullrich, S.E. Immune suppression and skin cancer development: regulation by NKT cells. Nat. Immunol. 1, 521–525 (2000).

    Article  CAS  Google Scholar 

  45. Ambrosino, E. et al. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J. Immunol. 179, 5126–5136 (2007).

    Article  CAS  Google Scholar 

  46. Terabe, M. et al. A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med. 202, 1627–1633 (2005).

    Article  CAS  Google Scholar 

  47. Stephens, H.A. MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol 22, 378–385 (2001).

    Article  CAS  Google Scholar 

  48. Jinushi, M., Hodi, F.S. & Dranoff, G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc. Natl. Acad. Sci. USA 103, 9190–9195 (2006).

    Article  CAS  Google Scholar 

  49. Grossman, Z. & Paul, W.E. Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses. Proc. Natl. Acad. Sci. USA 89, 10365–10369 (1992).

    Article  CAS  Google Scholar 

  50. Lewis, J.M. et al. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat. Immunol. 7, 843–850 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Tigelaar, T. Silberzahn, J. Dyson, D. Oppenheim, M. Shlomchik and R. Montgomery for reagents, help and discussions. Supported by the National Cancer Institute (R01-CA102703 and P50-CA121974 to M.G.) and the Wellcome Trust (071534 to A.C.H. and J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian C Hayday.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 1349 kb)

Supplementary Video 1

Interdigitating network of LC and DETC in resting murine epidermis. Three-dimensional analysis of the spatial relation between MHCII+ LC (green) and TCRγδ+ DETC (red) in the epidermis. Confocal microscopy image of epidermal sheet from wild-type FVB mouse was interpreted in 3D using Imaris software (Bitplane). (MOV 10861 kb)

Supplementary Video 2

Juxtaposed LC and DETC in the epidermis following local upregulation of Rae-1. Confocal microscopy image of epidermal sheet from a BiTg mouse after 72h on dox. MHCII+ LC (green); TCRγδ+ DETC (red). 3D rendering of confocal optical sections was prepared using Imaris software (Bitplane). (MOV 7211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strid, J., Roberts, S., Filler, R. et al. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat Immunol 9, 146–154 (2008). https://doi.org/10.1038/ni1556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing