Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells

Abstract

The mechanism responsible for immunoglobulin class switch recombination is unknown. Previous work has shown that class switch sequences have the unusual property of forming RNA-DNA hybrids when transcribed in vitro. Here we show that the RNA-DNA hybrid structure that forms in vitro is an R-loop with a displaced guanine (G)-rich strand that is single-stranded. This R-loop structure exists in vivo in B cells that have been stimulated to transcribe the γ3 or the γ2b switch region. The length of the R-loops can exceed 1 kilobase. We propose that this distinctive DNA structure is important in the class switch recombination mechanism

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro transcription of class switch sequences.
Figure 2: Detection of single-stranded regions with bisulfite.
Figure 3: In vitro–transcribed Sγ3 sequences analyzed with bisulfite.
Figure 4: In vivo structure of Sγ3 after LPS stimulation.
Figure 5: Evidence of R-loops at Sγ2b in LPS-stimulated B cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lieber, M.R. Site-specific recombination in the immune system. FASEB J. 5, 2934–2944 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Lieber, M.R. Pathologic and physiologic double-strand breaks: roles in cancer, aging, and the immune system. Am. J. Path. 153, 1323–1332 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fugmann, S.D., Lee, A.I., Shockett, P.E., Villey, I.J. & Schatz, D.G. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Gellert, M. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64, 39–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Dunnick, W.A., Hertz, G.Z., Scappino, L. & Gritzmacher, C. DNA sequence at immunoglobulin switch region recombination sites. Nucleic Acid Res. 21, 365–372 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stavnezer, J. Antibody class switching. Adv. Immunol. 61, 79–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Kinoshita, K. & Honjo, T. Unique and unprecedented recombination mechanisms in class switching. Curr. Opin. Immunol. 12, 195–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Snapper, C.M. & Finkelman, F.D. Immunoglobulin class switching. In Fundamental Immunology (ed. Paul, W.E.) 831–861 (Lippincott-Raven, Philadelphia, 1999).

    Google Scholar 

  9. Gritzmacher, C.A. Molecular aspects of heavy-chain class switching. Crit. Rev. Immunol. 9, 173–200 (1989).

    CAS  PubMed  Google Scholar 

  10. Daniels, G.A. & Lieber, M.R. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 23, 5006–5011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stavnezer, J. & Sirlin, S. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 5, 95–102 (1986).

    Article  Google Scholar 

  12. Coffman, R.L., Lebman, D.A. & Rothman, P. Mechanism and regulation of immunoglobulin isotype switching. Adv. Immunol. 54, 229–270 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, L. et al. Replacement of germ-line ε promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc. Natl. Acad. Sci. USA 90, 3705–3709 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bottaro, A. et al. S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J. 13, 665–674 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lorenz, M., Jung, S. & Radbruch, A. Switch transcripts in immunoglobulin class switching. Science 267, 1825–1828 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Hein, K. et al. Processing of switch transcripts is required for targeting of antibody class switch recombination. J. Exp. Med. 188, 2369–2374 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tashiro, J., Kinoshita, K. & Honjo, T. Palindromic but not G-rich sequences are targets of class switch recombination. Int. Immunol. 13, 495–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription. Science 292, 1863–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Dempsey, L.A., Sun, H., Hanakahi, L.A. & Maizels, N. G4 DNA binding by LR1 and its subunits, nucleolin, and hnRNP D, a role fro G-G pairing in immunoglobulin switch recombination. J. Biol. Chem. 274, 1066–1071 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Reaban, M.E. & Griffin, J.A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348, 342–344 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Reaban, M.E., Lebowitz, J. & Griffin, J.A. Transcription induces the formation of a stable RNA. DNA hybrid in the immunoglobulin α switch region. J. Biol. Chem. 269, 21850–21857 (1994).

    CAS  PubMed  Google Scholar 

  23. Tian, M. & Alt, F.W. Transcription induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Szurek, P., Petrini, J. & Dunnick, W. Complete nucleotide sequence of the murine g3 switch region and analysis of switch recombination sites in two γ3-expressing hybridomas. J. Immunol. 135, 620–626 (1985).

    CAS  PubMed  Google Scholar 

  25. Phoenix, P., Raymond, M., Masse, E. & Drolet, M. Roles of DNA topoisomerases in the regulation of R-loop formation in vitro. J. Biol. Chem. 272, 1473–1479 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Masse, E., Phoenix, P. & Drolet, M. DNA topoisomerases regulate R-loop formation during transcription of the rrnB operon in E. coli. J. Biol. Chem. 272, 12816–12823 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gough, G.W., Sullivan, K.M. & Lilley, D.M. The structure of cruciforms in supercoiled DNA: probing the single-stranded character of nucleotide bases with bisulphite. EMBO J. 5, 191–196 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hsieh, C.-L. Stability of patch methylation and its impact in regions of transcriptional initiation and elongation. Mol. Cell. Biol. 17, 5897–5904 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rothman, P. et al. Structure and expression of germline immunoglobulin γ3 heavy chain gene transcripts: implications for mitogen and lymphokine directed class switching. Int. Immunol. 2, 621–627 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Lutzker, S., Rothman, P., Pollock, R., Coffman, R. & Alt, F. Mitogen- and IL-4-regulated expression of germ-line Ig γ2b transcripts: evidence for directed heavy chain class switching. Cell 53, 177–184 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Masukata, H. & Tomizawa, J. A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell 62, 331–338 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Carles-Kinch, K. & Kreuzer, K.N. RNA/DNA hybrid formation at a bacteriophage T4 replication origin. J. Mol. Biol. 266, 915–926 (1997).

    CAS  PubMed  Google Scholar 

  34. Lee, D.Y. & Clayton, D.A. Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J. Biol. Chem. 271, 24262–24269 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Prichard, M. et al. Identification of persistent RNA-DNA hybrid structures within the origin of replication of human cytomegalovirus. J. Virol. 72, 6997–7004 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker, T.A. & Kornberg, A. Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell 55, 113–123 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Roberts, R.W. & Crothers, D.M. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463–1466 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Ratmeyer, L., Vinayak, R., Zhong, Y., Zon, G. & Wilson, W.D. Sequence specific thermodynamic and structural properties of DNA-RNA duplexes. Biochemistry 33, 5298–5304 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nature Immunology advance online publication, 7 April 2003 (doi:10.1038/ni918).

  41. Daniels, G.A. & Lieber, M.R. Strand-specificity in the transcriptional targeting of recombination at immunoglobulin class switch sequences. Proc. Natl. Acad. Sci. USA 92, 5625–5629 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, C.G. et al. Quantitative regulation of class switch recombination by switch region transcription. J. Exp. Med. 194, 365–374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muramatsu, M. et al. Class switch recombination and somatic hypermutation require activation-induced cytidine deaminase (AID), a member of the RNA editing cytidine deaminase family. Cell 102, 541–544 (2000).

    Article  Google Scholar 

  44. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Peersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  Google Scholar 

  46. DiNoia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

    Article  CAS  Google Scholar 

  47. Hsieh, C.-L., McCloskey, R.P. & Lieber, M.R. V(D)J recombination on minichromosomes is not affected by transcription. J. Biol. Chem. 267, 5613–5619 (1992).

    Google Scholar 

  48. Ford, J.E., McHeyzer-Williams, M.G. & Lieber, M.R. Chimeric molecules created by gene amplification interfere with the analysis of somatic hypermutation of murine immunoglobulin genes. Gene 142, 279–283 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Tracy, R.B. & Lieber, M.R. Transcription-dependent R-loop formation at mammalian class switch sequences. EMBO J. 19, 1055–1067 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tracy, R.B., Hsieh, C. & Lieber, M.R. Stable RNA/DNA hybrids in the mammalian genome: inducible intermediates in immunoglobulin class switch recombination. Science 288, 1058–1061 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Huang and M. Principale for assistance; and I. Haworth and J. Lee for discussions. These studies were supported by grants from the National Institutes of Health (M.R.L.). Manuscripts on in vitro class switch R-loops and in vivo R-loops49,50 were retracted very shortly after publication in 2000 because of data alteration by R. B. Tracy. There has been no reliance on the data or reagents of R. B. Tracy in this study or in any other studies by the Lieber laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K., Chedin, F., Hsieh, CL. et al. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4, 442–451 (2003). https://doi.org/10.1038/ni919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing