Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Foxo1 integrates insulin signaling with mitochondrial function in the liver

Abstract

Type 2 diabetes is a complex disease that is marked by the dysfunction of glucose and lipid metabolism. Hepatic insulin resistance is especially pathogenic in type 2 diabetes, as it dysregulates fasting and postprandial glucose tolerance and promotes systemic dyslipidemia and nonalcoholic fatty liver disease1,2. Mitochondrial dysfunction is closely associated with insulin resistance and might contribute to the progression of diabetes3,4. Here we used previously generated mice5 with hepatic insulin resistance owing to the deletion of the genes encoding insulin receptor substrate-1 (Irs-1) and Irs-2 (referred to here as double-knockout (DKO) mice) to establish the molecular link between dysregulated insulin action and mitochondrial function. The expression of several forkhead box O1 (Foxo1) target genes increased in the DKO liver, including heme oxygenase-1 (Hmox1), which disrupts complex III and IV of the respiratory chain and lowers the NAD+/NADH ratio and ATP production. Although peroxisome proliferator–activated receptor-γ coactivator-1α (Ppargc-1α) was also upregulated in DKO liver, it was acetylated and failed to promote compensatory mitochondrial biogenesis or function. Deletion of hepatic Foxo1 in DKO liver normalized the expression of Hmox1 and the NAD+/NADH ratio, reduced Ppargc-1α acetylation and restored mitochondrial oxidative metabolism and biogenesis. Thus, Foxo1 integrates insulin signaling with mitochondrial function, and inhibition of Foxo1 can improve hepatic metabolism during insulin resistance and the metabolic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial morphology and biogenesis in the insulin-resistant livers.
Figure 2: Evaluation of mitochondrial function.
Figure 3: Ppargc-1α inactivation in liver.
Figure 4: Foxo1 regulates electron transport chain via Hmox1.

Similar content being viewed by others

References

  1. Edgerton, D.S., Johnson, K.M. & Cherrington, A.D. Current strategies for the inhibition of hepatic glucose production in type 2 diabetes. Front. Biosci. 14, 1169–1181 (2009).

    Article  CAS  Google Scholar 

  2. Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829–838 (2008).

    Article  CAS  Google Scholar 

  3. Lowell, B.B. & Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387 (2005).

    Article  CAS  Google Scholar 

  4. Kim, J.A., Wei, Y. & Sowers, J.R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).

    Article  CAS  Google Scholar 

  5. Dong, X.C. et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 8, 65–76 (2008).

    Article  CAS  Google Scholar 

  6. Kubota, N. et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab. 8, 49–64 (2008).

    Article  CAS  Google Scholar 

  7. Matsumoto, M., Pocai, A., Rossetti, L., DePinho, R.A. & Accili, D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor foxo1 in liver. Cell Metab. 6, 208–216 (2007).

    Article  CAS  Google Scholar 

  8. Matsumoto, M., Han, S., Kitamura, T. & Accili, D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116, 2464–2472 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamei, Y. et al. Regulation of SREBP1c gene expression in skeletal muscle: role of retinoid X receptor/liver X receptor and forkhead-O1 transcription factor. Endocrinology 149, 2293–2305 (2008).

    Article  CAS  Google Scholar 

  10. Kamagate, A. et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J. Clin. Invest. 118, 2347–2364 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Horst, A. & Burgering, B.M. Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol. 8, 440–450 (2007).

    Article  CAS  Google Scholar 

  12. Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  Google Scholar 

  13. Gottlieb, E., Armour, S.M. & Thompson, C.B. Mitochondrial respiratory control is lost during growth factor deprivation. Proc. Natl. Acad. Sci. USA 99, 12801–12806 (2002).

    Article  CAS  Google Scholar 

  14. Leone, T.C. et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101 (2005).

    Article  Google Scholar 

  15. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  Google Scholar 

  16. Rodgers, J.T. & Puigserver, P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. USA 104, 12861–12866 (2007).

    Article  CAS  Google Scholar 

  17. Converso, D.P. et al. HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J. 20, 1236–1238 (2006).

    Article  CAS  Google Scholar 

  18. Taillé, C. et al. Induction of heme oxygenase-1 inhibits NAD(P)H oxidase activity by down-regulating cytochrome b558 expression via the reduction of heme availability. J. Biol. Chem. 279, 28681–28688 (2004).

    Article  Google Scholar 

  19. González-Halphen, D., Lindorfer, M.A. & Capaldi, R.A. Subunit arrangement in beef heart complex III. Biochemistry 27, 7021–7031 (1988).

    Article  Google Scholar 

  20. Alam, J., Cai, J. & Smith, A. Isolation and characterization of the mouse heme oxygenase-1 gene. Distal 5′ sequences are required for induction by heme or heavy metals. J. Biol. Chem. 269, 1001–1009 (1994).

    CAS  PubMed  Google Scholar 

  21. Baur, J.A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  Google Scholar 

  22. Howitz, K.T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    Article  CAS  Google Scholar 

  23. Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269–273 (2008).

    Article  CAS  Google Scholar 

  24. Kitamura, Y.I. et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163 (2005).

    Article  CAS  Google Scholar 

  25. Soriano, F.X. et al. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator–activated receptor-gamma coactivator-1α, estrogen-related receptor-α, and mitofusin 2. Diabetes 55, 1783–1791 (2006).

    Article  CAS  Google Scholar 

  26. Brown, M.S. & Goldstein, J.L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7, 95–96 (2008).

    Article  CAS  Google Scholar 

  27. Kunz, W.S. Evaluation of electron-transfer flavoprotein and α-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of β-oxidation. Biochim. Biophys. Acta 932, 8–16 (1988).

    Article  CAS  Google Scholar 

  28. Lumeng, L., Bremer, J. & Davis, E.J. Suppression of the mitochondrial oxidation of (−)-palmitylcarnitine by the malate-aspartate and α-glycerophosphate shuttles. J. Biol. Chem. 251, 277–284 (1976).

    CAS  PubMed  Google Scholar 

  29. Hwang, J.H. et al. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes 58, 965–974 (2009).

    Article  CAS  Google Scholar 

  30. Kelley, D.E., He, J., Menshikova, E.V. & Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    Article  CAS  Google Scholar 

  31. Stump, C.S., Short, K.R., Bigelow, M.L., Schimke, J.M. & Nair, K.S. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis and mRNA transcripts. Proc. Natl. Acad. Sci. USA 100, 7996–8001 (2003).

    Article  CAS  Google Scholar 

  32. Manfredi, G., Yang, L., Gajewski, C.D. & Mattiazzi, M. Measurements of ATP in mammalian cells. Methods 26, 317–326 (2002).

    Article  CAS  Google Scholar 

  33. Peterside, I.E., Selak, M.A. & Simmons, R.A. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am. J. Physiol. Endocrinol. Metab. 285, E1258–E1266 (2003).

    Article  CAS  Google Scholar 

  34. Friedman, J.R. et al. Orthogonal analysis of C/EBPβ targets in vivo during liver proliferation. Proc. Natl. Acad. Sci. USA 101, 12986–12991 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Spiegelman and L.M. Rohas for help with respiration assays, S. Orkin for help with fluorescent assays and R. de Cabo for the communication on flow cytometric assay. We are also grateful to Y. Long for his valuable comments and discussion. This project was supported by US National Institutes of Health grants DK38712 and DK55326 (M.F.W.), American Diabetes Association Mentor-Based Postdoctoral Fellowship 7-08-MN-63 (M.F.W. and Z.C.) and American Diabetes Association Junior Faculty Grant JF-7-07-27 (S.G.).

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and M.F.W. designed this study. Z.C., S.G., K.C., X.D., R.K. and J.T.R. performed the experiments. Z.C. and M.F.W. analyzed the data. Z.C. and M.F.W. communicated with R.A.D. and P.P. about data interpretation and wrote the manuscript.

Corresponding author

Correspondence to Morris F White.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 875 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z., Guo, S., Copps, K. et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med 15, 1307–1311 (2009). https://doi.org/10.1038/nm.2049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing