Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interactions between the immune and nervous systems in pain

Abstract

Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated network that coordinates immune responses and modulates the excitability of pain pathways. The immune system also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents. A greater understanding of the role of the immune system in pain processing and modulation reveals potential targets for analgesic drug development and new therapeutic opportunities for managing chronic pain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune activation and nociceptor sensitization after injury.
Figure 2: Modulation of sensory nerve activity in dorsal root ganglia by SGCs.
Figure 3: Activation of glia and neurons in the dorsal horn of the spinal cord after peripheral injury.

Similar content being viewed by others

References

  1. DeLeo, J.A., Tanga, F.Y. & Tawfik, V.L. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10, 40–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Watkins, L.R. & Maier, S.F. Immune regulation of central nervous system functions: from sickness responses to pathological pain. J. Intern. Med. 257, 139–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Scholz, J. & Woolf, C.J. The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 10, 1361–1368 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ren, K. & Dubner, R. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr. Opin. Anaesthesiol. 21, 570–579 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thacker, M.A., Clark, A.K., Marchand, F. & McMahon, S.B. Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth. Analg. 105, 838–847 (2007).

    Article  PubMed  Google Scholar 

  6. Miller, R.J., Jung, H., Bhangoo, S.K. & White, F.A. Cytokine and chemokine regulation of sensory neuron function. Handb. Exp. Pharmacol 194, 417–449 (2009).

    Article  CAS  Google Scholar 

  7. Rittner, H.L., Brack, A. & Stein, C. Pain and the immune system. Br. J. Anaesth. 101, 40–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, Z.-Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo, L.H. & Schluesener, H.J. The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell. Mol. Life Sci. 64, 1128–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Lawrence, T., Willoughby, D.A. & Gilroy, D.W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat. Rev. Immunol. 2, 787–795 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Folgueras, A.R. et al. Metalloproteinase MT5-MMP is an essential modulator of neuro-immune interactions in thermal pain stimulation. Proc. Natl. Acad. Sci. USA 106, 16451–16456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki, A., Suzuki, R., Furuno, T., Teshima, R. & Nakanishi, M. N-cadherin plays a role in the synapse-like structures between mast cells and neurites. Biol. Pharm. Bull. 27, 1891–1894 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Levy, D., Burstein, R., Kainz, V., Jakubowski, M. & Strassman, A.M. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130, 166–176 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lewin, G.R., Rueff, A. & Mendell, L.M. Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur. J. Neurosci. 6, 1903–1912 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Rudick, C.N., Bryce, P.J., Guichelaar, L.A., Berry, R.E. & Klumpp, D.J. Mast cell-derived histamine mediates cystitis pain. PLoS ONE 3, e2096 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Barbara, G. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132, 26–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Cui, J.G., Holmin, S., Mathiesen, T., Meyerson, B.A. & Linderoth, B. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain 88, 239–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, T., van Rooijen, N. & Tracey, D.J. Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain 86, 25–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Shubayev, V.I. et al. TNFα-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol. Cell. Neurosci. 31, 407–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Shubayev, V.I. & Myers, R.R. Upregulation and interaction of TNFα and gelatinases A and B in painful peripheral nerve injury. Brain Res. 855, 83–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Gómez-Nicola, D., Valle-Argos, B., Suardíaz, M., Taylor, J.S. & Nieto-Sampedro, M. Role of IL-15 in spinal cord and sciatic nerve after chronic constriction injury: regulation of macrophage and T-cell infiltration. J. Neurochem. 107, 1741–1752 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. Constantinescu, C.S., Grygar, C., Kappos, L. & Leppert, D. Interleukin 15 stimulates production of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by human peripheral blood mononuclear cells. Cytokine 13, 244–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Sorkin, L.S., Xiao, W.H., Wagner, R. & Myers, R.R. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 81, 255–262 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Verri, W.A. Jr. et al. IL-15 mediates immune inflammatory hypernociception by triggering a sequential release of IFN-γ, endothelin, and prostaglandin. Proc. Natl. Acad. Sci. USA 103, 9721–9725 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiguchi, N., Maeda, T., Kobayashi, Y., Fukazawa, Y. & Kishioka, S. Macrophage inflammatory protein-1α mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1beta up-regulation. Pain 149, 305–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Barclay, J. et al. Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain 130, 225–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Rutkowski, M.D., Pahl, J.L., Sweitzer, S., van Rooijen, N. & DeLeo, J.A. Limited role of macrophages in generation of nerve injury-induced mechanical allodynia. Physiol. Behav. 71, 225–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Brück, W., Huitinga, I. & Dijkstra, C.D. Liposome-mediated monocyte depletion during wallerian degeneration defines the role of hematogenous phagocytes in myelin removal. J. Neurosci. Res. 46, 477–484 (1996).

    Article  PubMed  Google Scholar 

  30. Cailhier, J.F. et al. Resident pleural macrophages are key orchestrators of neutrophil recruitment in pleural inflammation. Am. J. Respir. Crit. Care Med. 173, 540–547 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Ting, E. et al. Role of complement C5a in mechanical inflammatory hypernociception: potential use of C5a receptor antagonists to control inflammatory pain. Br. J. Pharmacol. 153, 1043–1053 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Guerrero, A.T. et al. Involvement of LTB4 in zymosan-induced joint nociception in mice: participation of neutrophils and PGE2. J. Leukoc. Biol. 83, 122–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Perretti, M., Ahluwalia, A., Flower, R.J. & Manzini, S. Endogenous tachykinins play a role in IL-1-induced neutrophil accumulation: involvement of NK-1 receptors. Immunology 80, 73–77 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ottosson, A. & Edvinsson, L. Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17, 166–174 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Krämer, H.H., He, L., Lu, B., Birklein, F. & Sommer, C. Increased pain and neurogenic inflammation in mice deficient of neutral endopeptidase. Neurobiol. Dis. 35, 177–183 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. Hu, P. & McLachlan, E.M. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience 112, 23–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Moalem, G., Xu, K. & Yu, L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience 129, 767–777 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Costigan, M. et al. Fitzgerald M.T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. 29, 14415–14422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao, L. & DeLeo, J.A. CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur. J. Immunol. 38, 448–458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Orhan, C.E., Onal, A. & Ulker, S. Antihyperalgesic and antiallodynic effect of sirolimus in neuropathic pain and the role of cytokines in this effect. Neurosci. Lett. 481, 17–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Brennan, P.C., Graham, M.A., Triano, J.J., Hondras, M.A. & Anderson, R.J. Lymphocyte profiles in patients with chronic low back pain enrolled in a clinical trial. J. Manipulative Physiol. Ther. 17, 219–227 (1994).

    CAS  PubMed  Google Scholar 

  42. Gilman-Sachs, A., Robbins, L. & Baum, L. Flow cytometric analysis of lymphocyte subsets in peripheral blood of chronic headache patients. Headache 29, 290–294 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Carroll, M.C. The complement system in regulation of adaptive immunity. Nat. Immunol. 5, 981–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Li, M., Peake, P.W., Charlesworth, J.A., Tracey, D.J. & Moalem-Taylor, G. Complement activation contributes to leukocyte recruitment and neuropathic pain following peripheral nerve injury in rats. Eur. J. Neurosci. 26, 3486–3500 (2007).

    Article  PubMed  Google Scholar 

  45. Levin, M.E. et al. Complement activation in the peripheral nervous system following the spinal nerve ligation model of neuropathic pain. Pain 137, 182–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Jang, J.H. et al. Nociceptive sensitization by complement C5a and C3a in mouse. Pain 148, 343–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Levine, J.D., Gooding, J., Donatoni, P., Borden, L. & Goetzl, E.J. The role of the polymorphonuclear leukocyte in hyperalgesia. J. Neurosci. 5, 3025–3029 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark, J.D. et al. Blockade of the complement C5a receptor reduces incisional allodynia, edema, and cytokine expression. Anesthesiology 104, 1274–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Griffin, R.S. et al. Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J. Neurosci. 27, 8699–8708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Twining, C.M. et al. Activation of the spinal cord complement cascade might contribute to mechanical allodynia induced by three animal models of spinal sensitization. J. Pain 6, 174–183 (2005).

    Article  PubMed  Google Scholar 

  51. Hu, P., Bembrick, A.L., Keay, K.A. & McLachlan, E.M. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav. Immun. 21, 599–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Dublin, P. & Hanani, M. Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav. Immun. 21, 592–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ledda, M., Blum, E., De Palo, S. & Hanani, M. Augmentation in gap junction-mediated cell coupling in dorsal root ganglia following sciatic nerve neuritis in the mouse. Neuroscience 164, 1538–1545 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Durham, P.L. & Garrett, F.G. Emerging importance of neuron-satellite glia interactions within trigeminal ganglia in craniofacial pain. Open Pain J. 3, 3–13 (2010).

    CAS  Google Scholar 

  55. Thalakoti, S. et al. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47, 1008–1023 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tang, X., Schmidt, T.M., Perez-Leighton, C.E. & Kofuji, P. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience 166, 397–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Vit, J.P., Ohara, P.T., Bhargava, A., Kelley, K. & Jasmin, L. Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J. Neurosci. 28, 4161–4171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Capuano, A. et al. Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol. Pain 5, 43 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Uçeyler, N., Tscharke, A. & Sommer, C. Early cytokine expression in mouse sciatic nerve after chronic constriction nerve injury depends on calpain. Brain Behav. Immun. 21, 553–560 (2007).

    Article  PubMed  CAS  Google Scholar 

  60. Deruddre, S. et al. Effects of a bupivacaine nerve block on the axonal transport of tumor necrosis factor-α (TNF-α) in a rat model of carrageenan-induced inflammation. Brain Behav. Immun. 24, 652–659 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Jung, H., Toth, P.T., White, F.A. & Miller, R.J. Monocyte chemoattractant protein-1 functions as a neuromodulator in dorsal root ganglia neurons. J. Neurochem. 104, 254–263 (2008).

    CAS  PubMed  Google Scholar 

  62. Sun, J.H., Yang, B., Donnelly, D.F., Ma, C. & LaMotte, R.H. MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J. Neurophysiol. 96, 2189–2199 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Khodorova, A. et al. Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat. Med. 9, 1055–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Hua, S. & Cabot, P.J. Mechanisms of peripheral immune-cell-mediated analgesia in inflammation: clinical and therapeutic implications. Trends Pharmacol. Sci. 31, 427–433 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Jessop, D.S. et al. Endomorphins in rheumatoid arthritis, osteoarthritis, and experimental arthritis. Ann. NY Acad. Sci. 1193, 117–122 (2010).

    Article  PubMed  Google Scholar 

  66. Zylka, M.J. et al. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60, 111–122 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaufmann, A. et al. “Host tissue damage” signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes. J. Biol. Chem. 280, 32459–32467 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, Y. et al. Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc. Natl. Acad. Sci. USA 105, 16773–16778 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Serhan, C.N., Chiang, N. & Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Svensson, C.I., Zattoni, M. & Serhan, C.N. Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J. Exp. Med. 204, 245–252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Spite, M. et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461, 1287–1291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raghavendra, V., Tanga, F.Y. & DeLeo, J.A. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur. J. Neurosci. 20, 467–473 (2004).

    Article  PubMed  Google Scholar 

  73. Zhao, P., Waxman, S.G. & Hains, B.C. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J. Neurosci. 27, 8893–8902 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wei, F., Guo, W., Zou, S., Ren, K. & Dubner, R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J. Neurosci. 28, 10482–10495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roberts, J., Ossipov, M.H. & Porreca, F. Glial activation in the rostroventromedial medulla promotes descending facilitation to mediate inflammatory hypersensitivity. Eur. J. Neurosci. 30, 229–241 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guo, W. et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J. Neurosci. 27, 6006–6018 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wen, Y.R. et al. Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology 107, 312–321 (2007).

    Article  PubMed  Google Scholar 

  78. Xie, W., Strong, J.A. & Zhang, J.M. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 160, 847–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Oka, Y. et al. Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience 145, 530–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Fu, K.Y., Light, A.R. & Maixner, W. Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience 101, 1127–1135 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Sweitzer, S.M., Colburn, R.W., Rutkowski, M. & DeLeo, J.A. Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res. 829, 209–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Clark, A.K., Gentry, C., Bradbury, E.J., McMahon, S.B. & Malcangio, M. Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur. J. Pain 11, 223–230 (2007).

    Article  PubMed  Google Scholar 

  83. Eijkelkamp, N. et al. GRK2: a novel cell-specific regulator of severity and duration of inflammatory pain. J. Neurosci. 30, 2138–2149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hua, X.Y. et al. Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur. J. Neurosci. 22, 2431–2440 (2005).

    Article  PubMed  Google Scholar 

  85. Chen, Y., Willcockson, H.H. & Valtschanoff, J.G. Influence of the vanilloid receptor TRPV1 on the activation of spinal cord glia in mouse models of pain. Exp. Neurol. 220, 383–390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Honore, P. et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98, 585–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, J. et al. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur. J. Neurosci. 17, 2750–2754 (2003).

    Article  PubMed  Google Scholar 

  88. Chacur, M., Lambertz, D., Hoheisel, U. & Mense, S. Role of spinal microglia in myositis-induced central sensitisation: an immunohistochemical and behavioural study in rats. Eur. J. Pain 13, 915–923 (2009).

    Article  PubMed  Google Scholar 

  89. Sun, S. et al. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain 129, 64–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Ledeboer, A. et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 115, 71–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Riazi, K. et al. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. USA 105, 17151–17156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Feng, Q.X. et al. Astrocytic activation in thoracic spinal cord contributes to persistent pain in rat model of chronic pancreatitis. Neuroscience 167, 501–509 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Romero-Sandoval, A., Chai, N., Nutile-McMenemy, N. & DeLeo, J.A. A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain. Brain Res. 1219, 116–126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meller, S.T., Dykstra, C., Grzybycki, D., Murphy, S. & Gebhart, G.F. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33, 1471–1478 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Clark, A.K., Yip, P.K. & Malcangio, M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J. Neurosci. 29, 6945–6954 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hathway, G.J., Vega-Avelaira, D., Moss, A., Ingram, R. & Fitzgerald, M. Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain 144, 110–118 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Molander, C., Hongpaisan, J., Svensson, M. & Aldskogius, H. Glial cell reactions in the spinal cord after sensory nerve stimulation are associated with axonal injury. Brain Res. 747, 122–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Schöbitz, B., de Kloet, E.R., Sutanto, W. & Holsboer, F. Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur. J. Neurosci. 5, 1426–1435 (1993).

    Article  PubMed  Google Scholar 

  99. Vallières, L. & Rivest, S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1beta. J. Neurochem. 69, 1668–1683 (1997).

    Article  PubMed  Google Scholar 

  100. Mitchell, K. et al. Localization of S100A8 and S100A9 expressing neutrophils to spinal cord during peripheral tissue inflammation. Pain 134, 216–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, J. et al. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 27, 12396–12406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Willis, C.L. & Davis, T.P. Chronic inflammatory pain and the neurovascular unit: a central role for glia in maintaining BBB integrity? Curr. Pharm. Des. 14, 1625–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Hemley, S.J., Biotech, B., Tu, J. & Stoodley, M.A. Role of the blood-spinal cord barrier in posttraumatic syringomyelia. J. Neurosurg. Spine 11, 696–704 (2009).

    Article  PubMed  Google Scholar 

  104. Lu, P. et al. CNS penetration of small molecules following local inflammation, widespread systemic inflammation or direct injury to the nervous system. Life Sci. 85, 450–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Mitchell, K., Yang, H.Y., Berk, J.D., Tran, J.H. & Iadarola, M.J. Monocyte chemoattractant protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation. Neuroscience 158, 885–895 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Kawasaki, Y. et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat. Med. 14, 331–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Milligan, E.D. & Watkins, L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10, 23–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Calvo, M. et al. Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J. Neurosci. 30, 5437–5450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dominguez, E., Mauborgne, A., Mallet, J., Desclaux, M. & Pohl, M. SOCS3-mediated blockade of JAK/STAT3 signaling pathway reveals its major contribution to spinal cord neuroinflammation and mechanical allodynia after peripheral nerve injury. J. Neurosci. 30, 5754–5766 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kawasaki, Y., Zhang, L., Cheng, J.K. & Ji, R.R. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 28, 5189–5194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Premont, R.T. & Gainetdinov, R.R. Physiological roles of G protein–coupled receptor kinases and arrestins. Annu. Rev. Physiol. 69, 511–534 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Willemen, H.L. et al. Microglial/macrophage GRK2 determines duration of peripheral IL-1β–induced hyperalgesia: Contribution of spinal cord CX3CR1, p38 and IL-1 signaling. Pain 150, 550–560 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, W. et al. Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PLoS ONE 4, e6973 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Garrison, C.J., Dougherty, P.M. & Carlton, S.M. GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp. Neurol. 129, 237–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Lalo, U., Pankratov, Y., Kirchhoff, F., North, R.A. & Verkhratsky, A. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J. Neurosci. 26, 2673–2683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ikeda, H., Tsuda, M., Inoue, K. & Murase, K. Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn. Eur. J. Neurosci. 25, 1297–1306 (2007).

    Article  PubMed  Google Scholar 

  117. Xu, M., Bruchas, M.R., Ippolito, D.L., Gendron, L. & Chavkin, C. Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J. Neurosci. 27, 2570–2581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tchivileva, I.E. et al. Characterization of NF-κB–mediated inhibition of catechol-O-methyltransferase. Mol. Pain 5, 13 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Diatchenko, L. et al. Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli. Pain 125, 216–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Fu, E.S. et al. Transgenic inhibition of glial NF-κB reduces pain behavior and inflammation after peripheral nerve injury. Pain 148, 509–518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao, Y.J., Xu, Z.Z., Liu, Y.C., Wen, Y.R., Decosterd, I. & Ji, R.R. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 148, 309–319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gardner, J. et al. Potential mechanisms for astrocyte-TIMP-1 downregulation in chronic inflammatory diseases. J. Neurosci. Res. 83, 1281–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Verge, G.M. et al. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 20, 1150–1160 (2004).

    Article  PubMed  Google Scholar 

  124. Zhuang, Z.Y. et al. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav. Immun. 21, 642–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Coull, J.A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Clark, A.K. et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci. USA 104, 10655–10660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trang, T., Beggs, S., Wan, X. & Salter, M.W. P2X4-receptor–mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J. Neurosci. 29, 3518–3528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hamilton, N.B. & Attwell, D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Sung, B., Lim, G. & Mao, J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J. Neurosci. 23, 2899–2910 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chiang, C.Y. et al. Astroglial glutamate-glutamine shuttle is involved in central sensitization of nociceptive neurons in rat medullary dorsal horn. J. Neurosci. 27, 9068–9076 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Okada-Ogawa, A. et al. Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J. Neurosci. 29, 11161–11171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nie, H. & Weng, H.R. Glutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn. J. Neurophysiol. 101, 2041–2051 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Ren, K. Emerging role of astroglia in pain hypersensitivity. Jpn. Dent. Sci. Rev. 46, 86–92 (2010).

    Article  PubMed  Google Scholar 

  134. Samad, T.A. et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410, 471–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Clark, A.K. et al. P2X7-dependent release of interleukin-1β and nociception in the spinal cord following lipopolysaccharide. J. Neurosci. 30, 573–582 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Johnston, I.N. et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J. Neurosci. 24, 7353–7365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Clark, A.K. et al. Rapid co-release of interleukin 1β and caspase 1 in spinal cord inflammation. J. Neurochem. 99, 868–880 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, R.X. et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain 118, 125–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Weyerbacher, A.R., Xu, Q., Tamasdan, C., Shin, S.J. & Inturrisi, C.E. N-Methyl-D-aspartate receptor (NMDAR) independent maintenance of inflammatory pain. Pain 148, 237–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Choi, J.I., Svensson, C.I., Koehrn, F.J., Bhuskute, A. & Sorkin, L.S. Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain 149, 243–253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miyoshi, K., Obata, K., Kondo, T., Okamura, H. & Noguchi, K. Interleukin-18–mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J. Neurosci. 28, 12775–12787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Listing, J. et al. Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum. 52, 3403–3412 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Terkeltaub, R. et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann. Rheum. Dis. 68, 1613–1617 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Torres, R. et al. Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by interleukin 1 inhibition in a novel animal model of gouty arthritis. Ann. Rheum. Dis. 68, 1602–1608 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Soderquist, R.G. et al. Release of plasmid DNA encoding IL-10 from PLGA microparticles facilitates long-term reversal of neuropathic pain following a single intrathecal administration. Pharm. Res. 27, 841–854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vergunst, C.E. et al. Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatology (Oxford) 46, 1773–1778 (2007).

    Article  CAS  Google Scholar 

  147. Romero-Sandoval, E.A., Horvath, R.J. & DeLeo, J.A. Neuroimmune interactions and pain: focus on glial-modulating targets. Curr. Opin. Investig. Drugs 9, 726–734 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hutchinson, M.R. et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav. Immun. 23, 240–250 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by US National Institutes of Health grants R01-DE11964, R01-NS060735 and R01-NS059028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Ren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, K., Dubner, R. Interactions between the immune and nervous systems in pain. Nat Med 16, 1267–1276 (2010). https://doi.org/10.1038/nm.2234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing