Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo

Subjects

Abstract

HIV-1 persists in a latent reservoir despite antiretroviral therapy (ART)1,2,3,4,5. This reservoir is the major barrier to HIV-1 eradication6,7. Current approaches to purging the latent reservoir involve pharmacologic induction of HIV-1 transcription and subsequent killing of infected cells by cytolytic T lymphocytes (CTLs) or viral cytopathic effects8,9,10. Agents that reverse latency without activating T cells have been identified using in vitro models of latency. However, their effects on latently infected cells from infected individuals remain largely unknown. Using a new ex vivo assay, we demonstrate that none of the latency-reversing agents (LRAs) tested induced outgrowth of HIV-1 from the latent reservoir of patients on ART. Using a quantitative reverse transcription PCR assay specific for all HIV-1 mRNAs, we demonstrate that LRAs that do not cause T cell activation do not induce substantial increases in intracellular HIV-1 mRNA in patient cells; only the protein kinase C agonist bryostatin-1 caused significant increases. These findings demonstrate that current in vitro models do not fully recapitulate mechanisms governing HIV-1 latency in vivo. Further, our data indicate that non-activating LRAs are unlikely to drive the elimination of the latent reservoir in vivo when administered individually.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LRAs do not induce outgrowth of latent HIV-1.
Figure 2: LRAs do not consistently induce HIV-1 mRNA production in cells from HIV-1 infected individuals on ART.
Figure 3: A primary CD4+ T cell model of HIV-1 latency is responsive to LRAs.
Figure 4: Vorinostat induces transcripts containing HIV-1 gag sequence but not HIV-1 mRNA in cells from HIV-1–infected individuals on ART.

Similar content being viewed by others

References

  1. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  Google Scholar 

  2. Wong, J.K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).

    Article  CAS  Google Scholar 

  3. Chun, T.W. et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94, 13193–13197 (1997).

    Article  CAS  Google Scholar 

  4. Siliciano, J.D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727–728 (2003).

    Article  CAS  Google Scholar 

  5. Strain, M.C. et al. Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: intrinsic stability predicts lifelong persistence. Proc. Natl. Acad. Sci. USA 100, 4819–4824 (2003).

    Article  CAS  Google Scholar 

  6. Richman, D.D. et al. The challenge of finding a cure for HIV infection. Science 323, 1304–1307 (2009).

    Article  CAS  Google Scholar 

  7. Deeks, S.G. et al. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12, 607–614 (2012).

    Article  CAS  Google Scholar 

  8. Karn, J. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr. Opin. HIV AIDS 6, 4–11 (2011).

    Article  Google Scholar 

  9. Choudhary, S.K. & Margolis, D.M. Curing HIV: pharmacologic approaches to target HIV-1 latency. Annu. Rev. Pharmacol. Toxicol. 51, 397–418 (2011).

    Article  CAS  Google Scholar 

  10. Hakre, S., Chavez, L., Shirakawa, K. & Verdin, E. HIV latency: experimental systems and molecular models. FEMS Microbiol. Rev. 36, 706–716 (2012).

    Article  CAS  Google Scholar 

  11. Archin, N.M. et al. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res. Hum. Retroviruses 25, 207–212 (2009).

    Article  CAS  Google Scholar 

  12. Bartholomeeusen, K., Fujinaga, K., Xiang, Y. & Peterlin, B.M. Histone deacetylase inhibitors (HDACis) that release the positive transcription elongation factor b (P-TEFb) from its inhibitory complex also activate HIV transcription. J. Biol. Chem. 288, 14400–14407 (2013).

    Article  CAS  Google Scholar 

  13. Contreras, X. et al. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J. Biol. Chem. 284, 6782–6789 (2009).

    Article  CAS  Google Scholar 

  14. Shirakawa, K., Chavez, L., Hakre, S., Calvanese, V. & Verdin, E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol. 21, 277–285 (2013).

    Article  CAS  Google Scholar 

  15. Doyon, G., Zerbato, J., Mellors, J.W. & Sluis-Cremer, N. Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS 27, F7–F11 (2013).

    Article  CAS  Google Scholar 

  16. Xing, S. et al. Disulfiram reactivates latent HIV-1 in a BCL-2–transduced primary CD4+ T cell model without inducing global T cell activation. J. Virol. 85, 6060–6064 (2011).

    Article  CAS  Google Scholar 

  17. Banerjee, C. et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J. Leukoc. Biol. 92, 1147–1154 (2012).

    Article  CAS  Google Scholar 

  18. Boehm, D. et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12, 452–462 (2013).

    Article  CAS  Google Scholar 

  19. Li, Z., Guo, J., Wu, Y. & Zhou, Q. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res. 41, 277–287 (2013).

    Article  CAS  Google Scholar 

  20. Zhu, J. et al. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Reports 2, 807–816 (2012).

    Article  CAS  Google Scholar 

  21. Korin, Y.D., Brooks, D.G., Brown, S., Korotzer, A. & Zack, J.A. Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J. Virol. 76, 8118–8123 (2002).

    Article  CAS  Google Scholar 

  22. Kulkosky, J. et al. Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98, 3006–3015 (2001).

    Article  CAS  Google Scholar 

  23. Williams, S.A. et al. Prostratin antagonizes HIV latency by activating NF-κB. J. Biol. Chem. 279, 42008–42017 (2004).

    Article  CAS  Google Scholar 

  24. DeChristopher, B.A. et al. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro. Nat. Chem. 4, 705–710 (2012).

    Article  CAS  Google Scholar 

  25. Kinter, A.L., Poli, G., Maury, W., Folks, T.M. & Fauci, A.S. Direct and cytokine-mediated activation of protein kinase C induces human immunodeficiency virus expression in chronically infected promonocytic cells. J. Virol. 64, 4306–4312 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehla, R. et al. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS ONE 5, e11160 (2010).

    Article  Google Scholar 

  27. Archin, N.M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).

    Article  CAS  Google Scholar 

  28. Blazkova, J. et al. Effect of histone deacetylase inhibitors on HIV production in latently infected, resting CD4+ T cells from infected individuals receiving effective antiretroviral therapy. J. Infect. Dis. 206, 765–769 (2012).

    Article  Google Scholar 

  29. Rasmussen, T.A., Tolstrup, M., Winckelmann, A., Ostergaard, L. & Sogaard, O.S. Eliminating the latent HIV reservoir by reactivation strategies: Advancing to clinical trials. Hum. Vacc. Immunother. 9, 790–799 (2013).

    Article  CAS  Google Scholar 

  30. Spivak, A.M. et al. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1–infected adults on antiretroviral therapy. Clin. Infect. Dis. 10.1093/cid/cit813 (12 December 2013).

  31. Moriuchi, H., Moriuchi, M. & Fauci, A.S. Induction of HIV replication by allogeneic stimulation. J. Immunol. 162, 7543–7548 (1999).

    CAS  PubMed  Google Scholar 

  32. Laird, G.M. et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 9, e1003398 (2013).

    Article  CAS  Google Scholar 

  33. Han, Y. et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78, 6122–6133 (2004).

    Article  CAS  Google Scholar 

  34. Schröder, A.R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    Article  Google Scholar 

  35. Baba, M., Miyake, H., Okamoto, M., Iizawa, Y. & Okonogi, K. Establishment of a CCR5-expressing T-lymphoblastoid cell line highly susceptible to R5 HIV type 1. AIDS Res. Hum. Retroviruses 16, 935–941 (2000).

    Article  CAS  Google Scholar 

  36. Yang, H.C. et al. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J. Clin. Invest. 119, 3473–3486 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shan, L. et al. A novel PCR assay for quantification of HIV-1 RNA. J. Virol. 87, 6521–6525 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. McHugh and A. Devadason for assistance with study participants. Funding was provided by the Martin Delaney Collaboratory of AIDS Researchers for Eradication and the Delaney AIDS Research Enterprise (US National Institutes of Health grants AI096113 and AI096109 (R.F.S.)), the Foundation for AIDS Research grants 108165-50-RGRL (R.F.S.) and 108707-54-RKRL (C.M.D.), the Johns Hopkins Center for AIDS Research (J.D.S.), US National Institutes of Health grant 43222 (R.F.S.) and the Howard Hughes Medical Institute (R.F.S.).

Author information

Authors and Affiliations

Authors

Contributions

G.M.L., C.K.B. and R.F.S. designed experiments; G.M.L. and C.K.B. performed experiments; C.M.D. obtained institutional review board approval and managed study participant recruitment; G.M.L., C.K.B., J.D.S. and R.F.S. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Robert F Siliciano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–3 (PDF 375 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullen, C., Laird, G., Durand, C. et al. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20, 425–429 (2014). https://doi.org/10.1038/nm.3489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing