Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis

Abstract

Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BAT activation alters the gut microbiome, lipoprotein levels and cholesterol uptake.
Figure 2: BAT activation induces the alternative bile acid synthesis pathway independently of FXR.
Figure 3: Cold exposure promotes fecal excretion of CYP7B1-derived bile acids.
Figure 4: Hepatic uptake of cholesterol-rich lipoproteins determines fecal bile acid excretion in cold-exposed mice.
Figure 5: Cold-induced bile acid excretion determines the composition of the gut microbiome.
Figure 6: CYP7B1-derived bile acids promote adaptive thermogenesis.

Similar content being viewed by others

References

  1. Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  2. Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 62, 361–380 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ridaura, V.K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Z. et al. Nonlethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyper-reactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwabe, R.F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. David, L.A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Carmody, R.N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Ziętak, M. et al. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 23, 1216–1223 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Stanford, K.I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Berbée, J.F. et al. Brown fat activation reduces hypercholesterolemia and protects from atherosclerosis development. Nat. Commun. 6, 6356 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Russell, D.W. The enzymes, regulation and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Li-Hawkins, J., Lund, E.G., Turley, S.D. & Russell, D.W. Disruption of the oxysterol 7α-hydroxylase gene in mice. J. Biol. Chem. 275, 16536–16542 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Kuipers, F., Bloks, V.W. & Groen, A.K. Beyond intestinal soap—bile acids in metabolic control. Nat. Rev. Endocrinol. 10, 488–498 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Kalaany, N.Y. & Mangelsdorf, D.J. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu. Rev. Physiol. 68, 159–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Pols, T.W., Noriega, L.G., Nomura, M., Auwerx, J. & Schoonjans, K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 54, 1263–1272 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide 1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329, 386–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Broeders, E.P. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Joyce, S.A. et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 111, 7421–7426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Islam, K.B. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sonnenburg, E.D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hambruch, E. et al. Synthetic farnesoid X receptor agonists induce high-density-lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor−/− mice. J. Pharmacol. Exp. Ther. 343, 556–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Cypess, A.M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Marken Lichtenbelt, W.D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nedergaard, J. & Cannon, B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11, 268–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Schlein, C. et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 23, 441–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Cannon, C.P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, G.X. et al. The brown-fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scheja, L. & Heeren, J. Metabolic interplay between white, beige, brown adipocytes and the liver. J. Hepatol. 64, 1176–1186 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Sayin, S.I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Zhong, C.Y. et al. Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Sci. Rep. 5, 10512 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brufau, G. et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 52, 1455–1464 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Haeusler, R.A., Astiarraga, B., Camastra, S., Accili, D. & Ferrannini, E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62, 4184–4191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hanssen, M.J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Rohlmann, A., Gotthardt, M., Hammer, R.E. & Herz, J. Inducible inactivation of hepatic LRP gene by Cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J. Clin. Invest. 101, 689–695 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rühlemann, M.C. et al. Fecal microbiota profiles as diagnostic biomarkers in primary sclerosing cholangitis. Gut 66, 753–754 (2017).

    Article  PubMed  Google Scholar 

  49. Wang, Y., Naumann, U., Wright, S.T. & Warton, D.I. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Article  Google Scholar 

  50. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  51. John, C. et al. A liquid chromatography–tandem mass spectrometry–based method for the simultaneous determination of hydroxy sterols and bile acids. J. Chromatogr. A 1371, 184–195 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 4, 1528 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. Meiss, E. et al. Metabolite targeting: development of a comprehensive targeted metabolomics platform for the assessment of diabetes and its complications. Metabolomics 12, 52 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Ehret, B. Henkel, A. Kuhl and E.-M. Azizi for excellent technical assistance, P. Dawson (Emory University School of Medicine) for the ASBT-specific polyclonal antibody, and J. Nedergaard and B. Cannon (Wenner-Gren Institute, Stockholm University) for the UCP1-spcific polyclonal antibody. This work was supported by grants funded by the Deutsche Forschungsgemeinschaft (SFB841, “Liver inflammation: infection, immune regulation und consequences” (J.H. and M.D.); KFO306, “Primary sclerosing cholangitis (J.H. and to A.F.)), a Heisenberg Professorship (HE3645/7-1 (J.H.) and DA1063/3-2 (M.D.)), an EFSD award supported by Merck Sharp Dohme (MSD) (J.H.), the EU FP7 project RESOLVE FP7-HEALTH-2012-305707 (J.H.), a University Medical Center Hamburg–Eppendorf MD/PhD fellowship (C.S.) and the US National Institutes of Health grant HL087564 (P.W.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.W., C.J., L.S. and J.H. designed the study, were involved in all aspects of the experiments and wrote the manuscript; M.C.R., F.-A.H. and A.F. were responsible for the microbiome analysis; M.B., N.S., M.H., I.E., C.S. and C.M. were involved in the metabolic studies; M.F., M.D., A.F., C.K. und P.W.S. were involved in study design; and all authors read and commented on the manuscript.

Corresponding author

Correspondence to Joerg Heeren.

Ethics declarations

Competing interests

C.K. is a co-founder and shareholder of Phenex Pharmaceuticals AG.

Supplementary information

Supplementary Figures and Table

Supplementary Figures 1–15 and Supplementary Table 1 (PDF 2708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worthmann, A., John, C., Rühlemann, M. et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med 23, 839–849 (2017). https://doi.org/10.1038/nm.4357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing