Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery

Abstract

The feasibility of gene therapy for cardiomyopathy, heart failure and other chronic cardiac muscle diseases is so far unproven. Here, we developed an in vivo recombinant adeno-associated virus (rAAV) transcoronary delivery system that allows stable, high efficiency and relatively cardiac-selective gene expression. We used rAAV to express a pseudophosphorylated mutant of human phospholamban (PLN), a key regulator of cardiac sarcoplasmic reticulum (SR) Ca2+ cycling in BIO14.6 cardiomyopathic hamsters. The rAAV/S16EPLN treatment enhanced myocardial SR Ca2+ uptake and suppressed progressive impairment of left ventricular (LV) systolic function and contractility for 28–30 weeks, thereby protecting cardiac myocytes from cytopathic plasma-membrane disruption. Low LV systolic pressure and deterioration in LV relaxation were also largely prevented by rAAV/S16EPLN treatment. Thus, transcoronary gene transfer of S16EPLN via rAAV vector is a potential therapy for progressive dilated cardiomyopathy and associated heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stable cardiac-selective gene expression via rAAV-mediated gene delivery.
Figure 2: The positive inotropic and lusitropic effects of a pseudophosphorylated mutant of phospholamban (S16EPLN).
Figure 3: Chronic suppression of heart-failure development by rAAV/S16EPLN gene delivery.
Figure 4: Sustained improvement of the cardiac contractility and relaxation.
Figure 5: Sustained hemodynamic effects of rAAV/S16EPLN gene delivery.
Figure 6: Efficiency of rAAV/S16EPLN transfer and its cytoprotective effect.

Similar content being viewed by others

References

  1. Chien, K.R. Stress pathways and heart failure. Cell 98, 555–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hunter, J.J. & Chien, K.R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341, 1276–1283 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Hoshijima, M. & Chien, K.R. Mixed signals in heart failure: cancer rules. J. Clin. Invest. 109, 849–855 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Sato, Y. et al. Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation. J. Biol. Chem. 276, 9392–9399 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Freeman, K. et al. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J. Clin. Invest. 107, 967–74 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miyamoto, M.I. et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl. Acad. Sci. USA 97, 793–798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. del Monte, F. et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 104, 1424–1429 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. White, D.C. et al. Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl. Acad. Sci USA 97, 5428–5433 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shah, A.S. et al. In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103, 1311–1316 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ikeda, Y. et al. Altered membrane proteins and permeability correlate with cardiac dysfunction in cardiomyopathic hamsters. Am. J. Physiol. Heart Circ. Physiol. 278, H1362–1370 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Straub, V. & Campbell, K.P. Muscular dystrophies and the dystrophin-glycoprotein complex. Curr. Opin. Neurol. 10, 168–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda, Y. et al. Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer. Circulation 105, 502–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Tada, M. & Toyofuku, T. Cardiac sarcoplasmic reticulum Ca2+-ATPase. in Handbook of Physiology, Section 2, The Cardiovascular system, Volume 1: The Heart ed. Berne, R.M. 301–334 (Oxford University Press, 2001).

    Google Scholar 

  16. Simmerman, H.K. & Jones, L.R. Phospholamban: Protein structure, mechanism of action, and role in cardiac function. Physiol. Rev. 78, 921–947 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Antos, C.L. et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ. Res. 89, 997–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Ryoke, T. et al. Progressive cardiac dysfunction and fibrosis in the cardiomyopathic hamster and effects of growth hormone and angiotensin-converting enzyme inhibition. Circulation 100, 1734–1743 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Lai, N.C. et al. Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation 102, 2396–2401 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Logeart, D. et al. Highly efficient adenovirus-mediated gene transfer to cardiac myocytes after single-pass coronary delivery. Hum. Gene Ther. 11, 1015–1022 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Brauner, R. et al. Intracoronary adenovirus-mediated transfer of immunosuppressive cytokine genes prolongs allograft survival. J. Thorac. Cardiovasc. Surg. 114, 923–933 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Svensson, E.C. et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99, 201–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kawada, T. et al. Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: Amelioration of morphological findings, sarcolemmal permeability, cardiac performances, and the prognosis of TO- 2 hamsters. Proc. Natl. Acad. Sci. USA 99, 901–906 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Melo, L.G. et al. Gene therapy strategy for long-term myocardial protection using adeno- associated virus-mediated delivery of heme oxygenase gene. Circulation 105, 602–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Xiao, X., Li, J. & Samulski, R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kessler, P.D. et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. USA 93, 14082–14087 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kay, M.A. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genet. 24, 257–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pruchnic, R. et al. The use of adeno-associated virus to circumvent the maturation- dependent viral transduction of muscle fibers. Hum. Gene Ther. 11, 521–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Asundi, V.K., Keister, B.F., Stahl, R.C. & Carey, D.J. Developmental and cell-type-specific expression of cell surface heparan sulfate proteoglycans in the rat heart. Exp. Cell Res. 230, 145–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Snyder, R.O. et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nature Genet. 16, 270–276 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Nakai, H. et al. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91, 4600–4607 (1998).

    CAS  PubMed  Google Scholar 

  33. Coral-Vazquez, R. et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98, 465–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Xiao, X., Li, J. & Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Auricchio, A., Hildinger, M., O'Connor, E., Gao, G.P. & Wilson, J.M. Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum. Gene Ther. 12, 71–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Frank, K., Tilgmann, C., Shannon, T.R., Bers, D.M. & Kranias, E.G. Regulatory role of phospholamban in the efficiency of cardiac sarcoplasmic reticulum Ca2+ transport. Biochemistry 39, 14176–14182 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Jackson, W.A. & Colyer, J. Translation of Ser16 and Thr17 phosphorylation of phospholamban into Ca2+-pump stimulation. Biochem. J. 316, 201–207 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Christensen, G., Minamisawa, S., Gruber, P.J., Wang, Y. & Chien, K.R. High-efficiency, long-term cardiac expression of foreign genes in living mouse embryos and neonates. Circulation 101, 178–184 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Chrast and J. Lam for experimental assistance. This work was entirely supported by the Jean Le Ducq Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Chien.

Ethics declarations

Competing interests

K.R.C., M.H. and Y.W. have equity in a startup company, Celladon, that holds the intellectual property for the mutant phospholamban (PLN) gene therapy strategy including S16EPLN outlined in this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshijima, M., Ikeda, Y., Iwanaga, Y. et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8, 864–871 (2002). https://doi.org/10.1038/nm739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing