Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonic nanorod metamaterials for biosensing

Abstract

Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events1,2,3,4. Despite undisputed advantages, including spectral tunability3, strong enhancement of the local electric field5,6 and much better adaptability to modern nanobiotechnology architectures7, localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts3. Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000 nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin–biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmonic nanorod metamaterial and the properties of the electromagnetic mode used for sensing experiments.
Figure 2: Optical resonances of the plasmonic nanorod metamaterial in different surroundings.
Figure 3: Investigation of the origin of the sensing mode.
Figure 4: The nanorod-based sensor calibration and observation of the test binding reaction.

References

  1. Liedberg, B., Nylander, C. & Lundstrum, I. Surface-plasmon resonance for gas-detection and biosensing. Sensors Actuators B 4, 299–304 (1983).

    Article  CAS  Google Scholar 

  2. Homola, J. Surface Plasmon Resonance Based Sensors (Springer, 2006).

    Book  Google Scholar 

  3. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  4. Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    Article  CAS  Google Scholar 

  5. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  6. Li, K., Li, X., Stockman, M. & Bergman, D. Surface plasmon amplification by stimulated emission in nanolenses. Phys. Rev. B 71, 115409 (2005).

    Article  Google Scholar 

  7. Prasad, P. N. Introduction to Biophotonics (Wiley-Interscience, 2003).

    Book  Google Scholar 

  8. Agranovich, V. M. & Mills, D. L. (eds) Surface Polaritons (North Holland, 1982).

  9. Kabashin, A. V. & Nikitin, P. I. Surface plasmon resonance interferometer for bio- and chemical-sensors. Opt. Commun. 150, 5–8 (1998).

    Article  CAS  Google Scholar 

  10. Markowicz, P. P. et al. Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt. Express 15, 1745–1754 (2007).

    Article  CAS  Google Scholar 

  11. Jackson, J. B. & Halas, N. J. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc. Natl Acad. Sci. USA 101, 17930–17935 (2004).

    Article  CAS  Google Scholar 

  12. Haes, A. J. & Van Duyne, R. P. A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 379, 920–930 (2004).

    Article  CAS  Google Scholar 

  13. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    Article  CAS  Google Scholar 

  14. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  15. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).

    Article  CAS  Google Scholar 

  16. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–368 (2008).

    Article  CAS  Google Scholar 

  17. Karlsson, R. SPR for molecular interaction analysis: A review of emerging application areas. J. Mol. Recognition 17, 151–161 (2004).

    Article  CAS  Google Scholar 

  18. Evans, P. R. et al. Plasmonic core/shell nanorod arrays: Sub-atto-liter controlled geometry and tunable optical properties. J. Phys. Chem. C 111, 12522–12527 (2007).

    Article  CAS  Google Scholar 

  19. Wurtz, G. A. et al. Guided plasmonic modes in nanorod assemblies: Strong electromagnetic coupling regime. Opt. Express 16, 7460–7470 (2008).

    Article  CAS  Google Scholar 

  20. Dickson, W. et al. Dielectric-loaded plasmonic nano-antenna arrays: A metamaterial with tuneable optical properties. Phys. Rev. B 76, 115411 (2007).

    Article  Google Scholar 

  21. Wurtz, G. A. et al. Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. Nano Lett. 7, 1297–13303 (2007).

    Article  CAS  Google Scholar 

  22. Elser, J., Wangberg, R., Narimanov, E. & Podolskiy, V. A. Nanowire metamaterials with extreme optical anisotropy. Appl. Phys. Lett. 89, 261102 (2006).

    Article  Google Scholar 

  23. Zhang, L.-M. & Uttamchandani, D. Optical chemical sensing employing surface plasmon resonance. Electron. Lett. 24, 1469–1470 (1988).

    Article  Google Scholar 

  24. Liao, H., Nehl, C. L. & Hafner, J. H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1, 201–208 (2006).

    Article  CAS  Google Scholar 

  25. <http://www.thermo.com/eThermo/CMA/PDFs/Articles/articlesFile_2449.pdf>.

  26. Marinakos, S. M., Chen, S. & Chilkoti, A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal. Chem. 79, 5278–5283 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by The Royal Society and the EPSRC (UK). V.A.P. acknowledges support from ONR (Grant No. N00014-07-1-0457) and NSF (Grant No. ECCS-0724763). The authors are grateful to T. W. Odom for insightful discussions of sensing parameters.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this letter.

Corresponding author

Correspondence to A. V. Zayats.

Supplementary information

Supplementary Information

Supplementary Information (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabashin, A., Evans, P., Pastkovsky, S. et al. Plasmonic nanorod metamaterials for biosensing. Nature Mater 8, 867–871 (2009). https://doi.org/10.1038/nmat2546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing