Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleation geometry governs ordered actin networks structures

Abstract

Actin filaments constitute one of the main components of cell cytoskeleton. Assembled into bundles in filopodia or in stress fibres, they play a pivotal role in eukaryotes during cell morphogenesis, adhesion and motility. The bundle emergence has been extensively related to specific actin regulators1,2,3 in vivo4,5,6,7. Such dynamic modulation was also highlighted by biochemical reconstitution of the actin-network assembly, in bulk solution or with biomimetic devices8,9,10,11,12,13,14,15,16,17,18. However, the question of how geometrical boundaries, such as those encountered in cells, affect the dynamic formation of highly ordered actin structures remains poorly studied14,19. Here we demonstrate that the nucleation geometry in itself can be the principal determinant of actin-network architecture. We developed a micropatterning method that enables the spatial control of actin nucleation sites for in vitro assays. Shape, orientation and distance between nucleation regions control filament orientation and length, filament–filament interactions and filopodium-like bundle formation. Modelling of filament growth and interactions demonstrates that basic mechanical and probabilistic laws govern actin assembly in higher-order structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometrical control of actin nucleation and growth.
Figure 2: Filament length controls their ability to cross dense actin networks.
Figure 3: Orientation of nucleation regions controls bundle formation.
Figure 4: Intrinsic properties and collective assembly of actin filaments regulate parallel-bundle formation.

Similar content being viewed by others

References

  1. Naumanen, P., Lappalainen, P. & Hotulainen, P. Mechanisms of actin stress fibre assembly. J. Microsc. 231, 446–454 (2008).

    Article  CAS  Google Scholar 

  2. Welch, M. D. & Mullins, R. D. Cellular control of actin nucleation. Annu. Rev. Cell. Dev. Biol. 18, 247–288 (2002).

    CAS  Google Scholar 

  3. Chesarone, M. A., DuPage, A. G. & Goode, B. L. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature Rev. Mol. Cell. Biol. 11, 62–74 (2010).

    Article  CAS  Google Scholar 

  4. Hotulainen, P. et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J. Cell. Biol. 185, 323–339 (2009).

    Article  CAS  Google Scholar 

  5. Korobova, F. & Svitkina, T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol. Biol. Cell. 21, 165–176.

  6. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell. Biol. 160, 409–421 (2003).

    Article  CAS  Google Scholar 

  7. Vignjevic, D. et al. Role of fascin in filopodial protrusion. J. Cell. Biol. 174, 863–875 (2006).

    Article  CAS  Google Scholar 

  8. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  Google Scholar 

  9. Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260 (1992).

    Article  CAS  Google Scholar 

  10. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    Article  CAS  Google Scholar 

  11. Bernheim-Groswasser, A., Wiesner, S., Golsteyn, R. M., Carlier, M. F. & Sykes, C. The dynamics of actin-based motility depend on surface parameters. Nature 417, 308–311 (2002).

    Article  CAS  Google Scholar 

  12. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 4908–4913 (1999).

    CAS  Google Scholar 

  13. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    Article  CAS  Google Scholar 

  14. Liu, A. P. et al. Membrane-induced bundling of actin filaments. Nature Phys. 4, 789–793 (2008).

    Article  CAS  Google Scholar 

  15. Achard, V. et al. A primer-based mechanism underlies branched actin filament networks formation and motility. Curr. Biol. 20, 423–428 (2010).

    Article  CAS  Google Scholar 

  16. Brieher, W. M., Coughlin, M. & Mitchison, T. J. Fascin-mediated propulsion of Listeria monocytogenes independent of frequent nucleation by the Arp2/3 complex. J. Cell. Biol. 165, 233–242 (2004).

    Article  CAS  Google Scholar 

  17. Haviv, L. et al. Reconstitution of the transition from lamellipodium to filopodium in a membrane-free system. Proc. Natl Acad. Sci. USA 103, 4906–4911 (2006).

    Article  CAS  Google Scholar 

  18. Vignjevic, D. et al. Formation of filopodia-like bundles in vitro from a dendritic network. J. Cell. Biol. 160, 951–962 (2003).

    Article  CAS  Google Scholar 

  19. Mogilner, A. & Rubinstein, B. The physics of filopodial protrusion. Biophys. J. 89, 782–795 (2005).

    Article  CAS  Google Scholar 

  20. Azioune, A., Storch, M., Bornens, M., Thery, M. & Piel, M. Simple and rapid process for single cell micro-patterning. Lab Chip 9, 1640–1642 (2009).

    Article  CAS  Google Scholar 

  21. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000).

    Article  CAS  Google Scholar 

  22. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  Google Scholar 

  23. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    Article  CAS  Google Scholar 

  24. Courson, D. S. & Rock, R. S. Actin crosslink assembly and disassembly mechanics for alpha-actinin and fascin. J. Biol. Chem. 285, 26350–26357 (2010).

    Article  CAS  Google Scholar 

  25. Medalia, O. et al. Organization of actin networks in intact filopodia. Curr. Biol. 17, 79–84 (2007).

    Article  CAS  Google Scholar 

  26. Iwasa, J. H. & Mullins, R. D. Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr. Biol. 17, 395–406 (2007).

    Article  CAS  Google Scholar 

  27. Parker, K. K. et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. Faseb. J. 16, 1195–1204 (2002).

    Article  CAS  Google Scholar 

  28. Thery, M., Pepin, A., Dressaire, E., Chen, Y. & Bornens, M. Cell distribution of stress fibres in response to adhesive environment geometry. Cell. Motil. Cytoskeleton 63, 341–355 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. J. Staiger, J. Plastino and D. Pellman for critical reading of the manuscript and suggestions. This work was supported by grants from Agence National pour la Recherche to L.B. (ANR-06-PCV1-0022 and ANR-08-BLAN-0012) and M.T. (ANR-08-JC-0103 and ANR-PCV08-322457); A-C.R. is supported by an IRTELIS fellowship from CEA.

Author information

Authors and Affiliations

Authors

Contributions

A-C.R. and T.C. carried out the experiments. J-L.M. carried out the physical modelling. L.B., R.B-P. and M.T. directed the project and wrote the manuscript.

Corresponding authors

Correspondence to Rajaa Boujemaa-Paterski or Manuel Théry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1385 kb)

Supplementary Information

Supplementary Movie 1 (MOV 5887 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2729 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1006 kb)

Supplementary Information

Supplementary Movie 4 (MOV 5138 kb)

Supplementary Information

Supplementary Movie 5 (MOV 7066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reymann, AC., Martiel, JL., Cambier, T. et al. Nucleation geometry governs ordered actin networks structures. Nature Mater 9, 827–832 (2010). https://doi.org/10.1038/nmat2855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2855

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research