Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combining insoluble and soluble factors to steer stem cell fate

Materials-based control of stem cell fate is beginning to be rigorously combined with traditional soluble-factor approaches to better understand the cells' behaviour and maximize their potential for therapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lessons from the niche.
Figure 2: Matrix and soluble factors converge to control lamin-A levels.
Figure 3: Stem cells have a time-dependent 'memory' of prior conditioning.

References

  1. Schofield, R. Biomed Pharmacother. 37, 375–380 (1983).

    CAS  Google Scholar 

  2. O'Brien, L. E. & Bilder, D. Annu. Rev. Cell Dev. Biol. 29, 107–136 (2013).

    CAS  Google Scholar 

  3. Mendez-Ferrer, S. et al. Nature 466, 829–834 (2010).

    CAS  Google Scholar 

  4. Morrison, S. J. & Scadden, D. T. Nature 505, 327–334 (2014).

    CAS  Google Scholar 

  5. Peled, A. et al. Blood 95, 3289–3296 (2000).

    CAS  Google Scholar 

  6. Heissig, B. et al. Cell 109, 625–637 (2002).

    CAS  Google Scholar 

  7. Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Nature 452, 442–447 (2008).

    CAS  Google Scholar 

  8. Keith, B. & Simon, M. C. Cell 129, 465–472 (2007).

    CAS  Google Scholar 

  9. Lichtman, M. A. N. Engl. J. Med. 283, 943–948 (1970).

    CAS  Google Scholar 

  10. Shin, J. W. et al. Proc. Natl Acad. Sci. USA 110, 18892–18897 (2013).

    CAS  Google Scholar 

  11. Shin, J. W. et al. Cell Stem Cell 14, 81–93 (2014).

    CAS  Google Scholar 

  12. Holst, J. et al. Nature Biotechnol. 28, 1123–1128 (2010).

    CAS  Google Scholar 

  13. Shin, J. W., Swift, J., Spinler, K. R. & Discher, D. E. Proc. Natl Acad. Sci. USA 108, 11458–11463 (2011).

    CAS  Google Scholar 

  14. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Cell 129, 999–1010 (2007).

    CAS  Google Scholar 

  15. Brohl, D. et al. Dev. Cell 23, 469–481 (2012).

    Google Scholar 

  16. Kuang, S. & Rudnicki, M. A. Trends Mol. Med. 14, 82–91 (2008).

    CAS  Google Scholar 

  17. Bentzinger, C. F. et al. Cell Stem Cell 12, 75–87 (2013).

    CAS  Google Scholar 

  18. Urciuolo, A. et al. Nature Commun. 4, 1964 (2013).

    Google Scholar 

  19. Gilbert, P. M. et al. Science 329, 1078–1081 (2010).

    CAS  Google Scholar 

  20. Engler, A. J. et al. J. Cell. Biol. 166, 877–887 (2004).

    CAS  Google Scholar 

  21. Chenn, A. & McConnell, S. K. Cell 82, 631–641 (1995).

    CAS  Google Scholar 

  22. Alvarez-Buylla, A. & Lim, D. A. Neuron 41, 683–686 (2004).

    CAS  Google Scholar 

  23. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K. & Kageyama, R. J. Neurosci. 30, 3489–3498 (2010).

    CAS  Google Scholar 

  24. Loulier, K. et al. PLoS Biol. 7, e1000176 (2009).

    Google Scholar 

  25. Kokovay, E. et al. Cell Stem Cell 7, 163–173 (2010).

    CAS  Google Scholar 

  26. Fuentealba, L. C., Obernier, K. & Alvarez-Buylla, A. Cell Stem Cell 10, 698–708 (2012).

    CAS  Google Scholar 

  27. Abdallah, B. M. & Kassem, M. J. Cell Physiol. 218, 9–12 (2009).

    CAS  Google Scholar 

  28. Pittenger, M. F. et al. Science 284, 143–147 (1999).

    CAS  Google Scholar 

  29. Colter, D. C., Class, R., Digirolamo, C. M. & Prockop, D. J. Proc. Natl Acad. Sci. USA 97, 3213–3218 (2000).

    CAS  Google Scholar 

  30. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  31. Wang, D. et al. J. Biol. Chem. 279, 43725–43734 (2004).

    CAS  Google Scholar 

  32. Breitbach, M. et al. Blood 110, 1362–1369 (2007).

    CAS  Google Scholar 

  33. Khetan, S. et al. Nature Mater. 12, 458–465 (2013).

    CAS  Google Scholar 

  34. Huebsch, N. et al. Nature Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  35. Colton, C. K. Cell Transplant. 4, 415–436 (1995).

    CAS  Google Scholar 

  36. Ahamed, J. et al. Blood 112, 3650–3660 (2008).

    CAS  Google Scholar 

  37. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. J. Cell Biol. 179, 1311–1323 (2007).

    CAS  Google Scholar 

  38. Wang, X. L., Liu, S. X. & Wilcken, D. E. Cardiovasc. Res. 34, 404–410 (1997).

    CAS  Google Scholar 

  39. Tenney, R. M. & Discher, D. E. Curr. Opin. Cell Biol. 21, 630–635 (2009).

    CAS  Google Scholar 

  40. Yamazaki, S. et al. Cell 147, 1146–1158 (2011).

    CAS  Google Scholar 

  41. Ghiaur, G. et al. Proc. Natl Acad. Sci. USA 110, 16121–16126 (2013).

    CAS  Google Scholar 

  42. Chanda, B., Ditadi, A., Iscove, N. N. & Keller, G. Cell 155, 215–227 (2013).

    CAS  Google Scholar 

  43. Purton, L. E. J. Exp. Med. 203, 1283–1293 (2006).

    CAS  Google Scholar 

  44. Labbaye, C. et al. Blood 83, 651–656 (1994).

    CAS  Google Scholar 

  45. Swift, J. et al. Science 341, 1240104 (2013).

    Google Scholar 

  46. Saha, K. et al. Biophys. J. 95, 4426–4438 (2008).

    CAS  Google Scholar 

  47. Banerjee, A. et al. Biomaterials 30, 4695–4699 (2009).

    CAS  Google Scholar 

  48. Dupont, S. et al. Nature 474, 179–183 (2011).

    CAS  Google Scholar 

  49. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Nature Mater. 13, 645–652 (2014).

    CAS  Google Scholar 

  50. Grigoriadis, A. E., Heersche, J. N. & Aubin, J. E. J. Cell Biol. 106, 2139–2151 (1988).

    CAS  Google Scholar 

  51. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Cell 113, 329–342 (2003).

    CAS  Google Scholar 

  52. Majkut, S. et al. Curr. Biol. 23, 2434–2439 (2013).

    CAS  Google Scholar 

  53. Chowdhury, F. et al. Nature Mater. 9, 82–88 (2010).

    CAS  Google Scholar 

  54. Chowdhury, F. et al. PLoS ONE 5, e15655 (2010).

    CAS  Google Scholar 

  55. Watanabe, K. et al. Nature Biotechnol. 25, 681–686 (2007).

    CAS  Google Scholar 

  56. Chen, T. et al. Stem Cells 28, 1315–1325 (2010).

    CAS  Google Scholar 

  57. Xu, Y. et al. Proc. Natl Acad. Sci. USA 107, 8129–8134 (2010).

    CAS  Google Scholar 

  58. Saha, S., Ji, L., de Pablo, J. J. & Palecek, S. P. J. Cell Physiol. 206, 126–137 (2006).

    CAS  Google Scholar 

  59. Rao, B. M. & Zandstra, P. W. Curr. Opin. Biotechnol. 16, 568–576 (2005).

    CAS  Google Scholar 

  60. Saha, K. et al. Proc. Natl Acad. Sci. USA 108, 18714–18719 (2011).

    CAS  Google Scholar 

  61. Melkoumian, Z. et al. Nature Biotechnol. 28, 606–610 (2010).

    CAS  Google Scholar 

  62. Mei, Y. et al. Nature Mater. 9, 768–778 (2010).

    CAS  Google Scholar 

  63. Celiz, A. D. et al. Nature Mater. 13, 570–579 (2014).

    CAS  Google Scholar 

  64. Takahashi, K. et al. Cell 131, 861–872 (2007).

    CAS  Google Scholar 

  65. Sakurai, K. et al. Cell Stem Cell 14, 523–534 (2014).

    CAS  Google Scholar 

  66. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. Science 298, 597–600 (2002).

    CAS  Google Scholar 

  67. Tropepe, V. et al. Neuron 30, 65–78 (2001).

    CAS  Google Scholar 

  68. Espuny-Camacho, I. et al. Neuron 77, 440–456 (2013).

    CAS  Google Scholar 

  69. Prokhorova, T. A. et al. Stem Cells Dev. 18, 47–54 (2009).

    CAS  Google Scholar 

  70. Abad, M. et al. Nature 502, 340–345 (2013).

    CAS  Google Scholar 

  71. Yu, D. X., Marchetto, M. C. & Gage, F. H. Cell Stem Cell 12, 678–688 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis E. Discher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingal, P., Discher, D. Combining insoluble and soluble factors to steer stem cell fate. Nature Mater 13, 532–537 (2014). https://doi.org/10.1038/nmat3997

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing