Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor

Abstract

Scarring is a long-lasting problem in higher animals, and reductionist approaches could aid in developing treatments. Here, we show that copolymerization of collagen I with polyacrylamide produces minimal matrix models of scars (MMMS), in which fractal-fibre bundles segregate heterogeneously to the hydrogel subsurface. Matrix stiffens locally—as in scars—while allowing separate control over adhesive-ligand density. The MMMS elicits scar-like phenotypes from mesenchymal stem cells (MSCs): cells spread and polarize quickly, increasing nucleoskeletal lamin-A yet expressing the ‘scar marker’ smooth muscle actin (SMA) more slowly. Surprisingly, expression responses to MMMS exhibit less cell-to-cell noise than homogeneously stiff gels. Such differences from bulk-average responses arise because a strong SMA repressor, NKX2.5, slowly exits the nucleus on rigid matrices. NKX2.5 overexpression overrides rigid phenotypes, inhibiting SMA and cell spreading, whereas cytoplasm-localized NKX2.5 mutants degrade in well-spread cells. MSCs thus form a ‘mechanical memory’ of rigidity by progressively suppressing NKX2.5, thereby elevating SMA in a scar-like state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A minimal matrix model of scars (MMMS).
Figure 2: Mechanosensitive proteins respond at different timescales to matrix stiffness.
Figure 3: Cell-to-cell variation is lower on MMMS than on homogeneously stiff substrates.
Figure 4: Matrix stiffness and cell tension modulates NKX2.5 expression and delayed shuttling.
Figure 5: NKX2.5 overexpression resets the mechanical memory of the rigid-substrate phenotype.
Figure 6: NKX2.5 degrades in long-term stiff-matrix cultures to set a mechanical memory.

Similar content being viewed by others

References

  1. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    CAS  Google Scholar 

  2. Georges, P. C. et al. Increased stiffness of the rat liver precedes matrix deposition: Implications for fibrosis. Am. J. Physiol. 293, G1147–G1154 (2007).

    CAS  Google Scholar 

  3. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    CAS  Google Scholar 

  4. Berry, M. F. et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am. J. Physiol. 290, H2196–H2203 (2006).

    CAS  Google Scholar 

  5. Engler, A. J., Rehfeldt, F., Sen, S. & Discher, D. E. Microtissue elasticity: Measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol. 83, 521–545 (2007).

    CAS  Google Scholar 

  6. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  Google Scholar 

  7. Khorasani, H. et al. A quantitative approach to scar analysis. Am. J. Pathol. 178, 621–628 (2011).

    Google Scholar 

  8. Martin, P. Wound healing–aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    CAS  Google Scholar 

  9. Bakay, M., Zhao, P., Chen, J. & Hoffman, E. P. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscul. Disord. 12 (suppl. 1), S125–S141 (2002).

    Google Scholar 

  10. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

    CAS  Google Scholar 

  11. Willems, I. E. M. G., Havenith, M. G., Demey, J. G. R. & Daemen, M. J. A. P. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145, 868–875 (1994).

    CAS  Google Scholar 

  12. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Google Scholar 

  13. Kasahara, H., Bartunkova, S., Schinke, M., Tanaka, M. & Izumo, S. Cardiac and extracardiac expression of Csx/Nkx2.5 homeodomain protein. Circ. Res. 82, 936–946 (1998).

    CAS  Google Scholar 

  14. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    CAS  Google Scholar 

  15. Hare, J. M. et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54, 2277–2286 (2009).

    CAS  Google Scholar 

  16. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  17. Shin, J. W. et al. Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell 14, 81–93 (2014).

    CAS  Google Scholar 

  18. Gregory, C. A., Ylostalo, J. & Prockop, D. J. Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: A two-stage hypothesis for regulation of MSC fate. Science STKE 2005, pe37 (2005).

    Google Scholar 

  19. Barberi, T., Willis, L. M., Socci, N. D. & Studer, L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med 2, 554–560 (2005).

    CAS  Google Scholar 

  20. Wong, S., Guo, W. H., Hoffecker, I. & Wang, Y. L. Preparation of a micropatterned rigid-soft composite substrate for probing cellular rigidity sensing. Methods Cell Biol. 121, 3–15 (2014).

    Google Scholar 

  21. Benoit, D. S., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).

    CAS  Google Scholar 

  22. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  23. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater. 12, 458–465 (2013).

    CAS  Google Scholar 

  24. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).

    CAS  Google Scholar 

  25. Dalby, M. J., Gadegaard, N. & Oreffo, R. O. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nature Mater. 13, 558–569 (2014).

    CAS  Google Scholar 

  26. Corr, D. T., Gallant-Behm, C. L., Shrive, N. G. & Hart, D. A. Biomechanical behavior of scar tissue and uninjured skin in a porcine model. Wound Repair Regen. 17, 250–259 (2009).

    Google Scholar 

  27. Achterberg, V. F. et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J. Invest. Dermatol. 134, 1862–1872 (2014).

    CAS  Google Scholar 

  28. MacQueen, L., Sun, Y. & Simmons, C. A. Mesenchymal stem cell mechanobiology and emerging experimental platforms. J. R. Soc. Interface 10, 20130179 (2013).

    Google Scholar 

  29. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    CAS  Google Scholar 

  30. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    CAS  Google Scholar 

  31. Vader, D., Kabla, A., Weitz, D. & Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE 4, e5902 (2009).

    Google Scholar 

  32. Buxboim, A., Rajagopal, K., Brown, A. E. & Discher, D. E. How deeply cells feel: Methods for thin gels. J. Phys. Condens. Matter 22, 194116 (2010).

    Google Scholar 

  33. Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004).

    CAS  Google Scholar 

  34. Mann, C. J. et al. Aberrant repair and fibrosis development in skeletal muscle. Skeletal Muscle 1, 21 (2011).

    Google Scholar 

  35. Raab, M. et al. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol. 199, 669–683 (2012).

    CAS  Google Scholar 

  36. Zemel, A., Rehfeldt, F., Brown, A. E. X., Discher, D. E. & Safran, S. A. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells. J. Phys. Condens. Matter 22, 194110 (2010).

    CAS  Google Scholar 

  37. Schmiedel, J. M. et al. MicroRNA control of protein expression noise. Science 348, 128–132 (2015).

    CAS  Google Scholar 

  38. Rinkevich, Y. et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015).

    Google Scholar 

  39. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    CAS  Google Scholar 

  40. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, U179–U212 (2011).

    Google Scholar 

  41. Sullivan, K. E., Quinn, K. P., Tang, K. M., Georgakoudi, I. & Black, L. D. Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res. Theory 5, 14 (2014).

    Google Scholar 

  42. Couzin-Frankel, J. The elusive heart fix. Science 345, 252–257 (2014).

    CAS  Google Scholar 

  43. Dingal, P. C. & Discher, D. E. Systems mechanobiology: Tension-inhibited protein turnover is sufficient to physically control gene circuits. Biophys. J. 107, 2734–2743 (2014).

    CAS  Google Scholar 

  44. Kasahara, H. & Izumo, S. Identification of the in vivo casein kinase II phosphorylation site within the homeodomain of the cardiac tissue-specifying homeobox gene product Csx/Nkx2.5. Mol. Cell. Biol. 19, 526–536 (1999).

    CAS  Google Scholar 

  45. Ryan, T. et al. Myosin phosphatase modulates the cardiac cell fate by regulating the subcellular localization of Nkx2.5 in a Wnt/Rho-associated protein kinase-dependent pathway. Circ. Res. 112, 257–266 (2013).

    CAS  Google Scholar 

  46. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nature Mater. 13, 645–652 (2014).

    CAS  Google Scholar 

  47. Costa, M. W. et al. Complex SUMO-1 regulation of cardiac transcription factor Nkx2-5. PLoS ONE 6, e24812 (2011).

    CAS  Google Scholar 

  48. Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–1369 (2007).

    CAS  Google Scholar 

  49. Rehfeldt, F. et al. Hyaluronic acid matrices show matrix stiffness in 2D and 3D dictates cytoskeletal order and myosin-II phosphorylation within stem cells. Integr. Biol. 4, 422–430 (2012).

    CAS  Google Scholar 

  50. Addis, R. C. et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J. Mol. Cell. Cardiol. 60, 97–106 (2013).

    CAS  Google Scholar 

  51. Lo, C. M. et al. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol. Biol. Cell 15, 982–989 (2004).

    CAS  Google Scholar 

  52. Domke, J. & Radmacher, M. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320–3325 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Kasahara (University of Florida), H. L. Sweeney, C. Van Dang, J. D. Gearhart, A. Raj, and D. Lee (University of Pennsylvania), respectively, for NLS mutant NKX2.5 plasmids, normal and mdx mouse muscle, mouse liver tumour tissue, inducible NKX2.5 in virus, fluorescent probes against lamin-A mRNA, and help with peeling measurements. We thank the University of Pennsylvania’s Stem Cell Xenograft Core, Microscopy Core, and Microarray Core. We thank the Wistar Institute Proteomics Core for assistance with MS and standard data analyses. This work was supported by the National Institutes of Health, National Cancer Institute (grant U54-CA193417, D.E.D.), National Institute of Biomedical Imaging and Bioengineering (grant R01-EB007049, D.E.D.), National Heart, Lung, and Blood Institute (grant R01-HL124106, D.E.D.), National Institute of Diabetes and Digestive and Kidney Diseases (grants P01-DK032094 and P30-DK090969), National Center for Advancing Translational Sciences (grant 8UL1TR000003), the American Heart Association (14GRNT20490285, D.E.D.), the US/Israel Binational Science Foundation, and the National Science Foundation (1200834, Materials Research Science and Engineering Center, and Nano Science and Engineering Center-Nano Bio Interface Center).

Author information

Authors and Affiliations

Authors

Contributions

P.C.D.P.D., A.M.B., M.R. and A.B. performed experiments; P.C.D.P.D., S.C., A.B., J.S. and D.E.D. analysed results; P.C.D.P.D. and D.E.D. created figures and wrote the paper; and P.C.D.P.D. and D.E.D. designed the research.

Corresponding author

Correspondence to Dennis E. Discher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingal, P., Bradshaw, A., Cho, S. et al. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nature Mater 14, 951–960 (2015). https://doi.org/10.1038/nmat4350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing