Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biomimetic proteolipid vesicles for targeting inflamed tissues

Abstract

A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles—which we refer to as leukosomes—retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leukosome synthesis and formulation.
Figure 2: Characterization of leukosomes’ physicochemical features.
Figure 3: Analysis of the leukocyte membrane proteins transferred to the leukosome’s lipid bilayer.
Figure 4: Leukosomes retain drug loading and release properties similar to control liposomes.
Figure 5: Leukosomes preferentially adhere to inflamed vasculature in vivo and improve tissue healing by preserving its architecture and reducing neutrophil infiltration.
Figure 6: Immunogenicity and safety of leukosomes.

Similar content being viewed by others

References

  1. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Rev. Drug Discov. 13, 813–827 (2014).

    Article  CAS  Google Scholar 

  2. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nature Rev. Drug Discov. 13, 655–672 (2014).

    Article  CAS  Google Scholar 

  3. Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotech. 3, 151–157 (2008).

    Article  CAS  Google Scholar 

  4. Parodi, A. et al. Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix. ACS Nano 8, 9874–9883 (2014).

    Article  CAS  Google Scholar 

  5. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 12, 991–1003 (2013).

    Article  CAS  Google Scholar 

  6. Kudgus, R. A. et al. Tuning pharmacokinetics and biodistribution of a targeted drug delivery system through incorporation of a passive targeting component. Sci. Rep. 4, 5669 (2014).

    Article  CAS  Google Scholar 

  7. Luk, B. T. & Zhang, L. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Rel. 220, 600–607 (2015).

    Article  CAS  Google Scholar 

  8. Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  CAS  Google Scholar 

  9. Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article  CAS  Google Scholar 

  10. Parodi, A. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotech. 8, 61–68 (2013).

    Article  CAS  Google Scholar 

  11. Hammer, D. A. et al. Leuko-polymersomes. Faraday Discuss 139, 129–141 (2008).

    Article  CAS  Google Scholar 

  12. Doshi, N. et al. Platelet mimetic particles for targeting thrombi in flowing blood. Adv. Mater. 24, 3864–3869 (2012).

    Article  CAS  Google Scholar 

  13. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  14. Robbins, G. P. et al. Tunable leuko-polymersomes that adhere specifically to inflammatory markers. Langmuir 26, 14089–14096 (2010).

    Article  CAS  Google Scholar 

  15. Anselmo, A. C. et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8, 11243–11253 (2014).

    Article  CAS  Google Scholar 

  16. Toledano Furman, N. E. et al. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett. 13, 3248–3255 (2013).

    Article  CAS  Google Scholar 

  17. Yoo, J-W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nature Rev. Drug Discov. 10, 521–535 (2011).

    Article  CAS  Google Scholar 

  18. Alvarez-Lorenzo, C. & Concheiro, A. Bioinspired drug delivery systems. Curr. Opin. Biotechnol. 24, 1167–1173 (2013).

    Article  CAS  Google Scholar 

  19. Gutiérrez Millán, C., Colino Gandarillas, C. I., Sayalero Marinero, M. L. & Lanao, J. M. Cell-based drug-delivery platforms. Ther. Deliver. 3, 25–41 (2012).

    Article  Google Scholar 

  20. Millan, C. G., Marinero, M. A. L. S., Castaneda, A. Z. & Lanao, J. M. Drug, enzyme and peptide delivery using erythrocytes as carriers. J. Control. Release 95, 27–49 (2004).

    Article  CAS  Google Scholar 

  21. Bretscher, M. S. Asymmetrical lipid bilayer structure for biological membranes. Nature 236, 11–12 (1972).

    Article  CAS  Google Scholar 

  22. Demetzos, C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J. Liposome Res. 18, 159–173 (2008).

    Article  CAS  Google Scholar 

  23. Manconi, M. et al. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle–skin interaction. Eur. J. Pharm. Biopharm. 78, 27–35 (2011).

    Article  CAS  Google Scholar 

  24. Mura, S., Manconi, M., Sinico, C., Valenti, D. & Fadda, A. M. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Intl. J. Pharm. 380, 72–79 (2009).

    Article  CAS  Google Scholar 

  25. Chow, T. S. Nanoscale surface roughness and particle adhesion on structured substrates. Nanotechnology 18, 115713 (2007).

    Article  Google Scholar 

  26. Schaap, I. A., Eghiaian, F., des Georges, A. & Veigel, C. Effect of envelope proteins on the mechanical properties of influenza virus. J. Biol. Chem. 287, 41078–41088 (2012).

    Article  CAS  Google Scholar 

  27. Mereghetti, P. et al. A Fourier transform infrared spectroscopy study of cell membrane domain modifications induced by docosahexaenoic acid. Biochim. Biophys. Acta 1840, 3115–3122 (2014).

    Article  CAS  Google Scholar 

  28. Lodish, H. et al. Molecular Cell Biology (W. H. Freeman & Co., 2000).

    Google Scholar 

  29. Benmerah, A., Scott, M., Poupon, V. & Marullo, S. Nuclear functions for plasma membrane associated proteins? Traffic 4, 503–511 (2003).

    Article  CAS  Google Scholar 

  30. Durr, E. et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nature Biotechnol. 22, 985–992 (2004).

    Article  CAS  Google Scholar 

  31. Lund, R., Leth-Larsen, R., Jensen, O. N. & Ditzel, H. J. Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J. Proteome Res. 8, 3078–3090 (2009).

    Article  CAS  Google Scholar 

  32. Liu, X., Zhang, M., Go, V. L. W. & Hu, S. Membrane proteomic analysis of pancreatic cancer cells. J. Biomed. Sci. 17, 74 (2010).

    Article  Google Scholar 

  33. Corbo, C. et al. Proteomic profiling of a biomimetic drug delivery platform. Curr. Drug Targets 16, 1540–1547 (2015).

    Article  CAS  Google Scholar 

  34. Zarbock, A., Ley, K., McEver, R. P. & Hidalgo, A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118, 6743–6751 (2011).

    Article  CAS  Google Scholar 

  35. Soto Pantoja, D. R., Kaur, S., Miller, T. W., Isenberg, J. S. & Roberts, D. D. Leukocyte surface antigen CD47. UCSD Mol. Pages 2, http://dx.doi.org/10.6072/H0.MP.A005186.01 (2013).

  36. Hu, C.-M. J. et al. ‘Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5, 2664–2668 (2013).

    Article  CAS  Google Scholar 

  37. Allen, T. Liposomal drug formulations. Drugs 56, 747–756 (1998).

    Article  CAS  Google Scholar 

  38. Cosco, D., Paolino, D., Cilurzo, F., Casale, F. & Fresta, M. Gemcitabine and tamoxifen-loaded liposomes as multidrug carriers for the treatment of breast cancer diseases. Intl. J. Pharm. 422, 229–237 (2012).

    Article  CAS  Google Scholar 

  39. Bernsdorff, C., Reszka, R. & Winter, R. Interaction of the anticancer agent Taxol TM (paclitaxel) with phospholipid bilayers. J. Biomed. Mater. Res. 46, 141–149 (1999).

    Article  CAS  Google Scholar 

  40. Franchimont, D., Kino, T., Galon, J., Meduri, G. U. & Chrousos, G. Glucocorticoids and inflammation revisited: the state of the art. Neuroimmunomodulation 10, 247–260 (2002).

    Article  Google Scholar 

  41. Gross, S. et al. Bioluminescence imaging of myeloperoxidase activity in vivo. Nature Med. 15, 455–461 (2009).

    Article  CAS  Google Scholar 

  42. Azzopardi, E. A., Ferguson, E. L. & Thomas, D. W. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 68, 257–274 (2013).

    Article  CAS  Google Scholar 

  43. Ishibashi, M. et al. Integrin LFA-1 regulates cell adhesion via transient clutch formation. Biochem. Biophys. Res. Commun. 464, 459–466 (2015).

    Article  CAS  Google Scholar 

  44. Arroyo, A. G. et al. Induction of tyrosine phosphorylation during ICAM-3 and LFA-1-mediated intercellular adhesion, and its regulation by the CD45 tyrosine phosphatase. J. Cell Biol. 126, 1277–1286 (1994).

    Article  CAS  Google Scholar 

  45. Sigal, A. et al. The LFA-1 integrin supports rolling adhesions on ICAM-1 under physiological shear flow in a permissive cellular environment. J. Immunol. 165, 442–452 (2000).

    Article  CAS  Google Scholar 

  46. Lorenz, H. M. et al. CD45 mAb induces cell adhesion in peripheral blood mononuclear cells via lymphocyte function-associated antigen-1 (LFA-1) and intercellular cell adhesion molecule 1 (ICAM-1). Cell. Immunol. 147, 110–128 (1993).

    Article  CAS  Google Scholar 

  47. Chen, X. et al. Inflamed leukocyte-mimetic nanoparticles for molecular imaging of inflammation. Biomaterials 32, 7651–7661 (2011).

    Article  CAS  Google Scholar 

  48. Sherman, M. B. et al. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J. Virol. 80, 10395–10406 (2006).

    Article  CAS  Google Scholar 

  49. Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nature Mater. 14, 532–539 (2015).

    Article  CAS  Google Scholar 

  50. Copp, J. A. et al. Clearance of pathological antibodies using biomimetic nanoparticles. Proc. Natl Acad. Sci. USA 111, 13481–13486 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge M. Ferrari for valuable and stimulating discussions about the study. The authors would like to thank J. You for his help in the animal procedures. The authors acknowledge support from the National Institute of Health (1R21CA173579-01A1 and 5U54CA143837 PSOC Pilot project), the Department of Defense (W81XWH-12-10414 BCRP Innovator Expansion), George J. and Angelina P. Kostas Charitable Foundation, Brown Foundation Inc., William Randolph Hearst Foundation, and The Regenerative Medicine Program Cullen Trust for Health Care to E.T.; R.M. was supported by grant RF-2010-2305526; C.C. and A.P. were supported by grant RF-2010-2318372 from Italian Ministry of Health. We thank Associazione Bianca Garavaglia, Via C. Cattaneo, 8, 21052 Busto Arsizio Varese, Italy and Project CREME ‘Campania Research in Experimental Medicine’ POR Campania FSE 2007/2013. We ackowledge D. A. Engler and the Proteomics Core, D. Haviland and the Flow Cytometry Core, A. L. Rivera and the Research Pathology Core at HMRI. We thank M. G. Landry and M. Evangelopoulos for graphical assistance with the creation of the schematics. The authors also acknowledge the Sealy Center for Structural Biology and Molecular Biophysics at the University of Texas Medical Branch at Galveston for providing research resources.

Author information

Authors and Affiliations

Authors

Contributions

E.T. conceived the leukosome platform, wrote the paper and was the principal investigator of the major supporting grants. E.T. and R.M. designed the research project and defined the goals of the present study. R.M. developed and optimized the protocols for leukosome assembly, supervised all the experiments, and evaluated the therapeutic efficacy with contributions from J.O.M. and E.D.R.; C.C. performed all the proteomic experiments and the interpretation of the data on protein enrichment; J.O.M. and E.D.R. performed the intravital microscopy experiments and analysis; M.E. performed flow cytometry and optimized the in vitro flow systems. J.O.M. carried out bioluminescence imaging (BLI) analysis and revised the manuscript; F.T. performed FTIR and AFM analyses; S.M. performed DSC analysis; F.T., S.M., and A.D.V. performed H&E and immunofluorescence staining and optical and confocal laser microscopy imaging; M.B.S. performed Cryo-TEM and assisted with analysis; I.K.Y. performed cytokine and organ functionality analyses; P.Z. performed the immunological analysis of leukosomes and gave his expert advice about the study of the immunogenic response; N.E.T.F. performed dexamethasone loading and release experiments; X.W. performed the PCR analysis; A.P. assisted with the editing of the manuscript and mentored the authors during the development of the project.

Corresponding author

Correspondence to E. Tasciotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4419 kb)

Supplementary Information

Supplementary Information (XLSX 40 kb)

Supplementary Information

Supplementary Information (JPG 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinaro, R., Corbo, C., Martinez, J. et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nature Mater 15, 1037–1046 (2016). https://doi.org/10.1038/nmat4644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4644

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research