Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-lived force patterns and deformation waves at repulsive epithelial boundaries

Abstract

For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell–matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EphB2 and ephrinB1 monolayers form a repulsive barrier.
Figure 2: EphB2 and ephrinB1 monolayers exert oscillatory force patterns.
Figure 3: Deformation waves propagate through the monolayer.
Figure 4: Inhibition of proliferation and tension attenuates deformation waves.
Figure 5: Deformation waves are a generic feature of repulsive interfaces.
Figure 6: Deformation waves emerge during epithelial fusion.

Similar content being viewed by others

References

  1. Fagotto, F. Current Topics in Developmental Biology Vol. 112, 19–64 (2015).

    Google Scholar 

  2. Dahmann, C., Oates, A. C. & Brand, M. Boundary formation and maintenance in tissue development. Nat. Rev. Genet. 12, 43–55 (2011).

    Article  CAS  Google Scholar 

  3. Batlle, E. et al. EphB receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130 (2005).

    Article  CAS  Google Scholar 

  4. Noren, N. K., Foos, G., Hauser, C. A. & Pasquale, E. B. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway. Nat. Cell Biol. 8, 815–825 (2006).

    Article  CAS  Google Scholar 

  5. Lenhoff, S. G., Lenhoff, H. M. & Trembley, A. Hydra and the Birth of Experimental Biology, 1744: Abraham Trembley’s Mémoires Concerning the Natural History of a Type of Freshwater Polyp with Arms Shaped Like Horns (Boxwood Press, 1744).

    Google Scholar 

  6. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963).

    Article  CAS  Google Scholar 

  7. Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005).

    Article  CAS  Google Scholar 

  8. Harris, A. K. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 61, 267–285 (1976).

    Article  CAS  Google Scholar 

  9. Brodland, G. W. The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124, 188–197 (2002).

    Article  Google Scholar 

  10. Maître, J.-L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).

    Article  CAS  Google Scholar 

  11. Amack, J. D. et al. Knowing the boundaries: extending the differential adhesion hypothesis in embryonic cell sorting. Science 338, 212–215 (2012).

    Article  CAS  Google Scholar 

  12. Batlle, E. & Wilkinson, D. G. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb. Perspect. Biol. 4, a008227 (2012).

    Article  Google Scholar 

  13. Batlle, E. et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/EphrinB. Cell 111, 251–263 (2002).

    Article  CAS  Google Scholar 

  14. Cortina, C. et al. EphB–ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat. Genet. 39, 1376–1383 (2007).

    Article  CAS  Google Scholar 

  15. Janes, P. W. et al. Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291–304 (2005).

    Article  CAS  Google Scholar 

  16. Hattori, M. et al. Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360–1365 (2000).

    Article  CAS  Google Scholar 

  17. Solanas, G., Cortina, C., Sevillano, M. & Batlle, E. Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat. Cell Biol. 13, 1100–1107 (2011).

    Article  CAS  Google Scholar 

  18. Zimmer, M., Palmer, A., Köhler, J. & Klein, R. EphB–ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat. Cell Biol. 5, 869–878 (2003).

    Article  CAS  Google Scholar 

  19. Marston, D. J., Dickinson, S. & Nobes, C. D. Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nat. Cell Biol. 5, 879–888 (2003).

    Article  CAS  Google Scholar 

  20. Shamah, S. M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  Google Scholar 

  21. Fagotto, F., Rohani, N., Touret, A.-S. & Li, R. A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by Ephrin/Eph-dependent contractility. Dev. Cell 27, 72–87 (2013).

    Article  CAS  Google Scholar 

  22. O’Neill, A. K. et al. Unidirectional Eph/ephrin signaling creates a cortical actomyosin differential to drive cell segregation. J. Cell Biol. 215, 217–229 (2016).

    Article  CAS  Google Scholar 

  23. Foty, R. A. et al. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611–1620 (1996).

    CAS  Google Scholar 

  24. Nnetu, K. D. et al. The impact of jamming on boundaries of collectively moving weak-interacting cells. New J. Phys. 14, 115012 (2012).

    Article  Google Scholar 

  25. Pawlizak, S. et al. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition. New J. Phys. 17, 83049 (2015).

    Article  CAS  Google Scholar 

  26. Tambe, D. T. et al. And I hope you like jamming too. New J. Phys. 17, 91001 (2015).

    Article  Google Scholar 

  27. Liang, C.-C., Park, A. Y. & Guan, J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007).

    Article  CAS  Google Scholar 

  28. Nnetu, K. D. et al. Directed persistent motion maintains sheet integrity during multi-cellular spreading and migration. Soft Matter 8, 6913 (2012).

    Article  CAS  Google Scholar 

  29. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nat. Phys. 8, 628–634 (2012).

    Article  CAS  Google Scholar 

  30. Trepat, X. et al. Physical forces during collective cell migration. Nat. Phys. 5, 426–430 (2009).

    Article  CAS  Google Scholar 

  31. Kim, J. H. et al. Propulsion and navigation within the advancing monolayer sheet. Nat. Mater. 12, 856–863 (2013).

    Article  CAS  Google Scholar 

  32. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011).

    Article  CAS  Google Scholar 

  33. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    Article  CAS  Google Scholar 

  34. Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

    Article  CAS  Google Scholar 

  35. Garcia, S. et al. Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl Acad. Sci. USA 112, 15314–15319 (2015).

    Article  CAS  Google Scholar 

  36. Yang, T. D., Hyun, K., Changhyeong, Y., Seung-Kuk, B. & Kyoung, J. L. Collective pulsatile expansion and swirls in proliferating tumor tissue. New J. Phys. 18, 103032 (2016).

    Article  Google Scholar 

  37. Ng, M. R., Besser, A., Danuser, G. & Brugge, J. S. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J. Cell Biol. 199, 545–563 (2012).

    Article  CAS  Google Scholar 

  38. Matsubayashi, Y. et al. ‘White wave’ analysis of epithelial scratch wound healing reveals how cells mobilise back from the leading edge in a myosin-II-dependent fashion. J. Cell Sci. 124, 1017–1021 (2011).

    Article  CAS  Google Scholar 

  39. Zehnder, S. M., Suaris, M., Bellaire, M. M. & Angelini, T. E. Biophysical letter cell volume fluctuations in MDCK monolayers. Biophys. J. 108, 247–250 (2015).

    Article  CAS  Google Scholar 

  40. Zaritsky, A. et al. Propagating waves of directionality and coordination orchestrate collective cell migration. PLoS Comput. Biol. 10, e1003747 (2014).

    Article  CAS  Google Scholar 

  41. Isa, L., Besseling, R., Morozov, A. N. & Poon, W. C. K. Velocity oscillations in microfluidic flows of concentrated colloidal suspensions. Phys. Rev. Lett. 102, 58302 (2009).

    Article  CAS  Google Scholar 

  42. Tlili, S. et al. Waves in cell monolayer without proliferation: density determines cell velocity and wave celerity. Preprint at http://arXiv.org/abs/1610.05420 (2016).

  43. Banerjee, S., Utuje, K. J. C. & Marchetti, M. C. Propagating stress waves during epithelial expansion. Phys. Rev. Lett. 114, 228101 (2015).

    Article  CAS  Google Scholar 

  44. Notbohm, J. et al. Cellular contraction and polarization drive collective cellular motion. Biophys. J. 110, 2729–2738 (2016).

    Article  CAS  Google Scholar 

  45. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

    Article  CAS  Google Scholar 

  46. Hakim, V. & Silberzan, P. Collective cell migration: a physics perspective. Rep. Prog. Phys. 80, 076601 (2017).

    Article  CAS  Google Scholar 

  47. Solon, A. P., Chaté, H. & Tailleur, J. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. Phys. Rev. Lett. 114, 68101 (2015).

    Article  CAS  Google Scholar 

  48. Chaté, H., Ginelli, F., Grégoire, G. & Raynaud, F. Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77, 46113 (2008).

    Article  CAS  Google Scholar 

  49. Baskaran, A. & Marchetti, M. C. Enhanced diffusion and ordering of self-propelled rods. Phys. Rev. Lett. 101, 268101 (2008).

    Article  CAS  Google Scholar 

  50. Riveline, D. et al. Focal contacts as mechanosensors. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  Google Scholar 

  51. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    Article  CAS  Google Scholar 

  52. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    Article  CAS  Google Scholar 

  53. Briscoe, J. & Small, S. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142 (2015).

  54. Oates, A. C. et al. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139, 625–639 (2012).

    Article  CAS  Google Scholar 

  55. Park, J.-A., Atia, L., Mitchel, J. A., Fredberg, J. J. & Butler, J. P. Collective migration and cell jamming in asthma, cancer and development. J. Cell Sci. 129, 3375–3383 (2016).

    Article  CAS  Google Scholar 

  56. Ashby, W. J., Wikswo, J. P. & Zijlstra, A. Magnetically attachable stencils and the non-destructive analysis of the contribution made by the underlying matrix to cell migration. Biomaterials 33, 8189–8203 (2012).

    Article  CAS  Google Scholar 

  57. Kandow, C. E., Georges, P. C., Janmey, P. A. & Beningo, K. A. Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods Cell Biol. 83, 29–46 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Pérez-González for help with viral transfections; J. Comas from the Cytometry service of Barcelona Science Park; C. Pérez-González, E. Bazellieres, A. Labernadie, R. Vincent and L. Valon for stimulating discussions; C. Cortina for the generation of cell lines, and N. Castro for technical assistance. This work was supported by the Spanish Ministry of Economy and Competitiveness/FEDER (AP2010-2026 FPU grant to P.R.-F., BFU2016-79916-P and BFU2014-52586-REDT to P.R.-C., BFU2015-65074-P to X.T., BFU2016-75101-P and RYC-2014-15559 to V.C.), the Generalitat de Catalunya (2014-SGR-927 to X.T. and CERCA programme), the European Research Council (CoG-616480 to X.T.), European Commission (Grant Agreement SEP-210342844 to P.R.-C. and X.T.), Obra Social ‘La Caixa’, a Career Integration Grant within the seventh European Community Framework Programme (PCIG10-GA-2011-303848 to P.R.-C.), Fundació la Marató de TV3 (project 20133330 to P.R.-C.), Fundación Botín (E.B.), Banco Santander through Santander Universities (E.B.) the Josef Stenier Foundation (E.B.), and the National Institutes of Health (U01CA202123, R01HL107561, PO1HL120839 to J.J.F.). IBEC and IRB Barcelona are recipients of a Severo Ochoa Award of Excellence from the MINECO.

Author information

Authors and Affiliations

Authors

Contributions

P.R.-F., A.B. and X.T. designed experiments. P.R.-F., A.B., A.M.-L. and R.S. performed experiments. P.R.-F. and R.S. designed magnetic stencils and contributed to protocol design. P.R.-F., A.B., R.S., A.M.-L. and V.C. carried out data analysis. G.S. and E.B. provided cell lines, characterized cell lines, and contributed to protocol design. E.B., J.J.F. and P.R.-C. contributed to data interpretation. All authors discussed and interpreted results. P.R.-F. and X.T. wrote the manuscript with feedback from all authors. X.T. and R.S. oversaw the project.

Corresponding authors

Correspondence to Raimon Sunyer or Xavier Trepat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2066 kb)

Supplementary Information

Supplementary Information (PDF 45 kb)

Supplementary Information

Supplementary movie 1 (AVI 7116 kb)

Supplementary Information

Supplementary movie 2 (AVI 8021 kb)

Supplementary Information

Supplementary movie 3 (AVI 7260 kb)

Supplementary Information

Supplementary movie 4 (AVI 10161 kb)

Supplementary Information

Supplementary movie 5 (AVI 10350 kb)

Supplementary Information

Supplementary movie 6 (AVI 6961 kb)

Supplementary Information

Supplementary movie 7 (AVI 5911 kb)

Supplementary Information

Supplementary movie 8 (AVI 10546 kb)

Supplementary Information

Supplementary movie 9 (AVI 3832 kb)

Supplementary Information

Supplementary movie 10 (AVI 7139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Franco, P., Brugués, A., Marín-Llauradó, A. et al. Long-lived force patterns and deformation waves at repulsive epithelial boundaries. Nature Mater 16, 1029–1037 (2017). https://doi.org/10.1038/nmat4972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing