Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein folding stability and dynamics imaged in a living cell

Abstract

Biomolecular dynamics and stability are predominantly investigated in vitro and extrapolated to explain function in the living cell. We present fast relaxation imaging (FreI), which combines fluorescence microscopy and temperature jumps to probe biomolecular dynamics and stability inside a single living cell with high spatiotemporal resolution. We demonstrated the method by measuring the reversible fast folding kinetics as well as folding thermodynamics of a fluorescence resonance energy transfer (FRET) probe-labeled phosphoglycerate kinase construct in two human cell lines. Comparison with in vitro experiments at 23–49 °C showed that the cell environment influences protein stability and folding rate. FReI should also be applicable to the study of protein-protein interactions and heat-shock responses as well as to comparative studies of cell populations or whole organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the temperature-jump fluorescence imaging microscope.
Figure 2: Heating laser profiles, resulting temperature profiles and folding kinetics of the low-Tm PGK construct.
Figure 3: Temperature-dependent FRET and thermal denaturation of the low-Tm PGK fusion construct.
Figure 4: Normalized D/A relaxation kinetics of the PGK fusion protein in vivo and in vitro track the denaturation curves.
Figure 5: Comparison of folding kinetics of the less stable PGK mutant in two cell lines.

Similar content being viewed by others

References

  1. Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  2. Cheung, M.S., Klimov, D. & Thirumalai, D. Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc. Natl. Acad. Sci. USA 102, 4753–4758 (2005).

    Article  CAS  Google Scholar 

  3. Ignatova, Z. et al. From the test tube to the cell: exploring the folding and aggregation of a beta-clam protein. Biopolymers 88, 157–163 (2007).

    Article  CAS  Google Scholar 

  4. Frauenfelder, H., Fenimore, P.W., Chen, G. & McMahon, B.H. Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. USA 103, 15469–15472 (2006).

    Article  CAS  Google Scholar 

  5. Johnson, J.L. & Craig, E.A. Protein folding in vivo: unraveling complex pathways. Cell 90, 201–204 (1997).

    Article  CAS  Google Scholar 

  6. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009).

    Article  CAS  Google Scholar 

  7. Evans, C.L. & Xie, X.S. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008).

    Article  CAS  Google Scholar 

  8. Ignatova, Z. & Gierasch, L.M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. USA 101, 523–528 (2004).

    Article  CAS  Google Scholar 

  9. Kural, C. et al. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308, 1469–1472 (2005).

    Article  CAS  Google Scholar 

  10. Luby-Phelps, K., Castle, P.E., Taylor, D.L. & Lanni, F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3t3 cells. Proc. Natl. Acad. Sci. USA 84, 4910–4913 (1987).

    Article  CAS  Google Scholar 

  11. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  12. Williams, S.P., Haggie, P.M. & Brindle, K.M. F-19 NMR measurements of the rotational mobility of proteins in vivo. Biophys. J. 72, 490–498 (1997).

    Article  CAS  Google Scholar 

  13. Serber, Z. et al. High-resolution macromolecular NMR spectroscopy inside living cells. J. Am. Chem. Soc. 123, 2446–2447 (2001).

    Article  CAS  Google Scholar 

  14. Inomata, K. et al. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458, 106–109 (2009).

    Article  CAS  Google Scholar 

  15. Gruebele, M. Fast protein folding kinetics. in Protein Folding, Misfolding and Aggregation (ed. Muñoz, V.) 106–138 (RSC Publishing, London, 2008).

    Chapter  Google Scholar 

  16. Ma, H.R., Wan, C.Z. & Zewail, A.H. Ultrafast T-jump in water: studies of conformation and reaction dynamics at the thermal limit. J. Am. Chem. Soc. 128, 6338–6340 (2006).

    Article  CAS  Google Scholar 

  17. Clarke, P.G.H. Developmental cell-death—morphological diversity and multiple mechanisms. Anat. Embryol. (Berl.) 181, 195–213 (1990).

    Article  CAS  Google Scholar 

  18. Yu, J., Xiao, J., Ren, X.J., Lao, K.Q. & Xie, X.S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  19. Brandenburg, B. et al. Imaging poliovirus entry in live cells. PLoS Biol. 5, 1543–1555 (2007).

    Article  CAS  Google Scholar 

  20. Mattheyses, A.L., Shaw, K. & Axelrod, D. Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle. Microsc. Res. Tech. 69, 642–647 (2006).

    Article  Google Scholar 

  21. Dingel, B. & Kawata, S. Speckle-free image in a laser-diode microscope by using the optical feedback effect. Opt. Lett. 18, 549–551 (1993).

    Article  CAS  Google Scholar 

  22. Osvath, S., Sabelko, J.J. & Gruebele, M. Tuning the heterogeneous early folding dynamics of phosphoglycerate kinase. J. Mol. Biol. 333, 187–199 (2003).

    Article  CAS  Google Scholar 

  23. Kamei, Y. et al. Infrared laser-mediated gene induction in targeted single cells in vivo. Nat. Methods 6, 79–81 (2009).

    Article  CAS  Google Scholar 

  24. Osvath, S., Herenyi, L., Zavodszky, P., Fidy, J. & Kohler, G. Hierarchic finite level energy landscape model to describe the refolding kinetics of phosphoglycerate kinase. J. Biol. Chem. 281, 24375–24380 (2006).

    Article  CAS  Google Scholar 

  25. Wibo, M. & Poole, B. Protein degradation in cultured cells. 2. Uptake of chloroquine by rat fibroblasts and inhibition of cellular protein degradation and cathepsin-B1. J. Cell Biol. 63, 430–440 (1974).

    Article  CAS  Google Scholar 

  26. Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    Article  CAS  Google Scholar 

  27. Kar, S., Baumann, W.T., Paul, M.R. & Tyson, J.J. Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 106, 6471–6476 (2009).

    Article  CAS  Google Scholar 

  28. Leadsham, J.E. & Gourlay, C.W. Cytoskeletal induced apoptosis in yeast. Biochim. Biophys. Acta 1783, 1406–1412 (2008).

    Article  CAS  Google Scholar 

  29. Vieira, M.N.N., Figueroa-Villar, J.D., Meirelles, M.N.L., Ferreira, S.T. & De Felice, F.G. Small molecule inhibitors of lysozyme amyloid aggregation. Cell Biochem. Biophys. 44, 549–553 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the US National Science Foundation (MCB 0613643). A.D. was supported by the National Science Foundation Center for Physics of Living Cells (Illinois Physics Department) while part of this work was carried out. S.E. and M.G. acknowledge support from the Alexander von Humboldt Foundation. We thank Z. Shen and K.V. Prasanth for growing the U2OS and HeLa cell lines.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and S.E. designed and implemented instrumentation and software, performed experiments, analyzed data and wrote the paper. J.D.M. designed experimental components. M.G. designed the experiment, analyzed data and wrote the paper.

Corresponding author

Correspondence to Martin Gruebele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbinghaus, S., Dhar, A., McDonald, J. et al. Protein folding stability and dynamics imaged in a living cell. Nat Methods 7, 319–323 (2010). https://doi.org/10.1038/nmeth.1435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing