Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon

Abstract

We have generated a recombinant Mos1 transposon that can insert up to 45-kb transgenes into the Caenorhabditis elegans genome. The minimal Mos1 transposon (miniMos) is 550 bp long and inserts DNA into the genome at high frequency (60% of injected animals). Genetic and antibiotic markers can be used for selection, and the transposon is active in C. elegans isolates and Caenorhabditis briggsae. We used the miniMos transposon to generate six universal Mos1-mediated single-copy insertion (mosSCI) landing sites that allow targeted transgene insertion with a single targeting vector into permissive expression sites on all autosomes. We also generated two collections of strains: a set of bright fluorescent insertions that are useful as dominant, genetic balancers and a set of lacO insertions to track genome position.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A modified Mos1 transposon can carry cargo.
Figure 2: Fosmid insertions are intact.
Figure 3: Using miniMos to generate universal mosSCI insertion sites.

Similar content being viewed by others

References

  1. Rubin, G.M. & Spradling, A.C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  3. Spradling, A.C. et al. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. USA 92, 10824–10830 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venken, K.J.T., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Wallrath, L.L. & Elgin, S.C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 9, 1263–1277 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Ivics, Z. et al. Transposon-mediated genome manipulation in vertebrates. Nat. Methods 6, 415–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bessereau, J.-L. et al. Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413, 70–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Robert, V. & Bessereau, J.-L. Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J. 26, 170–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Frøkjær-Jensen, C., Davis, M.W., Ailion, M. & Jorgensen, E.M. Improved Mos1-mediated transgenesis in C. elegans. Nat. Methods 9, 117–118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Frøkjaer-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat. Genet. 40, 1375–1383 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, C., Fenk, L.A. & de Bono, M. Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res. 41, e193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dickinson, D.J., Ward, J.D., Reiner, D.J. & Goldstein, B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 10, 1028–1034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Friedland, A.E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10, 741–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lohe, A.R. & Hartl, D.L. Efficient mobilization of mariner in vivo requires multiple internal sequences. Genetics 160, 519–526 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lozovsky, E.R., Nurminsky, D., Wimmer, E.A. & Hartl, D.L. Unexpected stability of mariner transgenes in Drosophila. Genetics 160, 527–535 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Horn, C. & Wimmer, E.A. A versatile vector set for animal transgenesis. Dev. Genes Evol. 210, 630–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Casteret, S. et al. Physical properties of DNA components affecting the transposition efficiency of the mariner Mos1 element. Mol. Genet. Genomics 282, 531–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Boulin, T. & Bessereau, J.-L. Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat. Protoc. 2, 1276–1287 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, T. et al. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21, 227–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer, B.J. Targeting X chromosomes for repression. Curr. Opin. Genet. Dev. 20, 179–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seth, M. et al. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell 27, 656–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wedeles, C.J., Wu, M.Z. & Claycomb, J.M. Protection of germline gene expression by the C. elegans argonaute CSR-1. Dev. Cell 27, 664–671 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Vallin, E. et al. A genome-wide collection of Mos1 transposon insertion mutants for the C. elegans research community. PLoS ONE 7, e30482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lohe, A.R. & Hartl, D.L. Efficient mobilization of mariner in vivo requires multiple internal sequences. Genetics 160, 519–526 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maduro, M. & Pilgrim, D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977–988 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Giordano-Santini, R. et al. An antibiotic selection marker for nematode transgenesis. Nat. Methods 7, 721–723 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Semple, J.I., Garcia-Verdugo, R. & Lehner, B. Rapid selection of transgenic C. elegans using antibiotic resistance. Nat. Methods 7, 725–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Radman, I., Greiss, S. & Chin, J.W. Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection. PLoS ONE 8, e76019 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kelly, W.G., Xu, S., Montgomery, M.K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146, 227–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Andersen, E.C. et al. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat. Genet. 44, 285–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, Z. et al. New tools for investigating the comparative biology of Caenorhabditis briggsae and C. elegans. Genetics 184, 853–863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Maydan, J.S. et al. Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. Genome Res. 17, 337–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maydan, J.S., Okada, H.M., Flibotte, S., Edgley, M.L. & Moerman, D.G. De novo identification of single nucleotide mutations in Caenorhabditis elegans using array comparative genomic hybridization. Genetics 181, 1673–1677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Robinett, C.C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using Lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage ϕC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sarov, M. et al. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell 150, 855–866 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Semple, J.I., Biondini, L. & Lehner, B. Generating transgenic nematodes by bombardment and antibiotic selection. Nat. Methods 9, 118–119 2012).

    Article  CAS  PubMed  Google Scholar 

  43. Meister, P., Towbin, B.D., Pike, B.L., Ponti, A. & Gasser, S.M. The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev. 24, 766–782 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, C., Fenk, L.A. & de Bono, M. Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res. 41, e193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei, X., Potter, C.J., Luo, L. & Shen, K. Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat. Methods 9, 391–395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Waterston (University of Washington), A. Sapir and P. Sternberg (California Institute of Technology), and the NemaGENETAG consortium for strains; B. Meyer (UC Berkeley) and P. Meister (University of Bern) for validating lacO insertions; the J. Chin (MRC, University of Cambridge), D. Dupuy (University of Bordeaux), B. Lehner (EMBL-CRG, Systems Biology Unit, Barcelona) and G. Seydoux (John Hopkins University) labs for plasmids; M. Maduro (UC Riverside) for improving mosSCI insertion frequency; and K. Hoe for expert technical assistance. Some strains were provided by the Caenorhabditis Genetics Center (CGC), which is funded by US National Institutes of Health (NIH) Office of Research Infrastructure Programs (P40 OD010440). This work was supported by the Carlsberg Foundation (C.F.-J.), NIH grant 1R01GM095817 (E.M.J.), US National Science Foundation grant NSF IOS-0920069 (E.M.J.) and the Howard Hughes Medical Institute (E.M.J.). The Mosmid engineering work was supported by the Max Planck Society (MPG) Initiative “BAC TransgeneOmics” and the NIH ModENCODE project. Work in the laboratory of D.G.M. was supported by the Canadian Institute for Health Research. Work in the laboratory of D.G.M. was supported by the Canadian Institute for Health Research and the Canadian Institute for Advanced Research.

Author information

Authors and Affiliations

Authors

Contributions

C.F.-J. designed experiments under the supervision of E.M.J. and M.W.D. C.F.-J., M.S., A.P., J.T., M.L. and S.F. performed the research. C.F.-J. performed molecular biology, injections, imaging and genetics; M.L. generated mapping strains; M.S. and A.P. performed fosmid recombineering; and J.T., S.F. and D.G.M. performed comparative genome hybridization. C.F.-J. and E.M.J. wrote the paper with input from all coauthors.

Corresponding authors

Correspondence to Christian Frøkjær-Jensen or Erik M Jorgensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Note and Supplementary Protocols (PDF 1861 kb)

Supplementary Table 1

Strains, Plasmids, Oligos and Universal insertion sites (XLSX 318 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frøkjær-Jensen, C., Davis, M., Sarov, M. et al. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods 11, 529–534 (2014). https://doi.org/10.1038/nmeth.2889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing