Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Towards error-free profiling of immune repertoires

Abstract

Deep profiling of antibody and T cell–receptor repertoires by means of high-throughput sequencing has become an attractive approach for adaptive immunity studies, but its power is substantially compromised by the accumulation of PCR and sequencing errors. Here we report MIGEC (molecular identifier groups–based error correction), a strategy for high-throughput sequencing data analysis. MIGEC allows for nearly absolute error correction while fully preserving the natural diversity of complex immune repertoires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MIGEC analysis.
Figure 2: MIGEC analysis for control clones.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Robins, H.S. et al. Blood 114, 4099–4107 (2009).

    Article  CAS  Google Scholar 

  2. Warren, R.L. et al. Genome Res. 21, 790–797 (2011).

    Article  CAS  Google Scholar 

  3. Venturi, V. et al. J. Immunol. 186, 4285–4294 (2011).

    Article  CAS  Google Scholar 

  4. Mamedov, I.Z. et al. EMBO Mol. Med. 3, 201–207 (2011).

    Article  CAS  Google Scholar 

  5. Klarenbeek, P.L. et al. PLoS Pathog. 8, e1002889 (2012).

    Article  CAS  Google Scholar 

  6. Britanova, O.V. et al. Bone Marrow Transplant. 47, 1479–1481 (2012).

    Article  CAS  Google Scholar 

  7. Bashford-Rogers, R.J. et al. Genome Res. 23, 1874–1884 (2013).

    Article  CAS  Google Scholar 

  8. Putintseva, E.V. et al. Front. Immunol. 4, 463 (2013).

    Article  Google Scholar 

  9. Britanova, O.V. et al. J. Immunol. 192, 2689–2698 (2014).

    Article  CAS  Google Scholar 

  10. Wang, C. et al. J. Immunol. 192, 603–611 (2014).

    Article  CAS  Google Scholar 

  11. Nguyen, P. et al. BMC Genomics 12, 106 (2011).

    Article  CAS  Google Scholar 

  12. Bolotin, D.A. et al. Eur. J. Immunol. 42, 3073–3083 (2012).

    Article  CAS  Google Scholar 

  13. Campbell, P.J. et al. Proc. Natl. Acad. Sci. USA 105, 13081–13086 (2008).

    Article  CAS  Google Scholar 

  14. Logan, A.C. et al. Proc. Natl. Acad. Sci. USA 108, 21194–21199 (2011).

    Article  CAS  Google Scholar 

  15. Kivioja, T. et al. Nat. Methods 9, 72–74 (2012).

    Article  CAS  Google Scholar 

  16. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K.W. & Vogelstein, B. Proc. Natl. Acad. Sci. USA 108, 9530–9535 (2011).

    Article  Google Scholar 

  17. Douek, D.C. et al. J. Immunol. 168, 3099–3104 (2002).

    Article  CAS  Google Scholar 

  18. Bolotin, D.A. et al. Nat. Methods 10, 813–814 (2013).

    Article  CAS  Google Scholar 

  19. Shapiro, E., Biezuner, T. & Linnarsson, S. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  CAS  Google Scholar 

  20. Brodin, J. et al. PLoS ONE 8, e70388 (2013).

    Article  CAS  Google Scholar 

  21. Brochet, X., Lefranc, M.-P. & Giudicelli, V. Nucleic Acids Res. 36, W503–W508 (2008).

    Article  CAS  Google Scholar 

  22. Ye, J., Ma, N., Madden, T.L. & Ostell, J.M. Nucleic Acids Res. 41, W34–W40 (2013).

    Article  Google Scholar 

  23. Glanville, J. et al. Proc. Natl. Acad. Sci. USA 106, 20216–20221 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Eisenstein for the English editing. This work was supported by the Molecular and Cell Biology program RAS, Russian Foundation for Basic Research 12-04-33139 (to D.M.C.), 13-04-00998 (to O.V.B.) and 14-04-01247 (to E.M.M.), Russian President grant MD-3044.2014.4 (to D.M.C.) and European Regional Development Fund (CZ.1.05/1.1.00/02.0068).

Author information

Authors and Affiliations

Authors

Contributions

M.S., O.V.B., D.A.B., D.S., S.P. and D.M.C. designed experiments. O.V.B., E.M.M., M.A.T., I.Z.M., T.R.T., D.B.S., E.V.P., K.P. and C.L. performed experiments. M.S., D.A.B. and D.M.C. designed the MIGEC algorithm and analyzed and interpreted results. M.S., S.L., T.N.S. and D.M.C. wrote the manuscript.

Corresponding author

Correspondence to Dmitriy M Chudakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1–4 (PDF 4939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shugay, M., Britanova, O., Merzlyak, E. et al. Towards error-free profiling of immune repertoires. Nat Methods 11, 653–655 (2014). https://doi.org/10.1038/nmeth.2960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing