Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput cellular RNA device engineering

Abstract

Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary-interaction RNA devices performed better in terms of gene silencing, activation ratio and ligand sensitivity than optimized RNA devices that rely on secondary-structure changes. We applied our method to build biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate the underlying sequence-structure-function relationships that empower rational design of complex biomolecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-throughput RNA device engineering method.
Figure 2: GFP/mCherry activity ratios (μ) for all members of the theophylline aptamer libraries based on FACS-seq assays.
Figure 3: Validation of theophylline-responsive tertiary-interaction switches identified through the FACS-seq method.
Figure 4: Extension of the FACS-seq method to identifying tertiary-interaction switches for other aptamer-target pairs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Win, M.N. & Smolke, C.D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl. Acad. Sci. USA 104, 14283–14288 (2007).

    Article  CAS  Google Scholar 

  2. Wei, K.Y., Chen, Y.Y. & Smolke, C.D. A yeast-based rapid prototype platform for gene control elements in mammalian cells. Biotechnol. Bioeng. 110, 1201–1210 (2013).

    Article  CAS  Google Scholar 

  3. Kennedy, A.B., Vowles, J.V., d'Espaux, L. & Smolke, C.D. Protein-responsive ribozyme switches in eukaryotic cells. Nucleic Acids Res. 42, 12306–12321 (2014).

    Article  CAS  Google Scholar 

  4. Ausländer, S., Ketzer, P. & Hartig, J.S. A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol. Biosyst. 6, 807–814 (2010).

    Article  Google Scholar 

  5. Wieland, M. & Hartig, J.S. Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew. Chem. Int. Edn Engl. 47, 2604–2607 (2008).

    Article  CAS  Google Scholar 

  6. Nomura, Y., Zhou, L., Miu, A. & Yokobayashi, Y. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth. Biol. 2, 684–689 (2013).

    Article  CAS  Google Scholar 

  7. Wittmann, A. & Suess, B. Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. Mol. Biosyst. 7, 2419–2427 (2011).

    Article  CAS  Google Scholar 

  8. Klauser, B., Atanasov, J., Siewert, L.K. & Hartig, J.S. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in. S. cerevisiae. ACS Synth. Biol. 15, 516–525 (2015).

    Article  Google Scholar 

  9. Ausländer, S. et al. A general design strategy for protein-responsive riboswitches in mammalian cells. Nat. Methods 11, 1154–1160 (2014).

    Article  Google Scholar 

  10. Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    Article  CAS  Google Scholar 

  11. Galloway, K.E., Franco, E. & Smolke, C.D. Dynamically reshaping signaling networks to program cell fate via genetic controllers. Science 341, 1235005 (2013).

    Article  Google Scholar 

  12. Chen, Y.Y., Jensen, M.C. & Smolke, C.D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl. Acad. Sci. USA 107, 8531–8536 (2010).

    Article  CAS  Google Scholar 

  13. Liang, J.C., Chang, A.L., Kennedy, A.B. & Smolke, C.D. A high-throughput, quantitative cell-based screen for efficient tailoring of RNA device activity. Nucleic Acids Res. 40, e154 (2012).

    Article  CAS  Google Scholar 

  14. Tinoco, I. & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).

    Article  CAS  Google Scholar 

  15. Mustoe, A.M., Brooks, C.L. & Al-Hashimi, H.M. Hierarchy of RNA functional dynamics. Annu. Rev. Biochem. 83, 441–466 (2014).

    Article  CAS  Google Scholar 

  16. Khvorova, A., Lescoute, A., Westhof, E. & Jayasena, S.D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat. Struct. Biol. 10, 708–712 (2003).

    Article  CAS  Google Scholar 

  17. Beisel, C.L. & Smolke, C.D. Design principles for riboswitch function. PLoS Comput. Biol. 5, e1000363 (2009).

    Article  Google Scholar 

  18. Perreault, J. et al. Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput. Biol. 7, e1002031 (2011).

    Article  CAS  Google Scholar 

  19. Link, K.H. et al. Engineering high-speed allosteric hammerhead ribozymes. Biol. Chem. 388, 779–786 (2007).

    Article  CAS  Google Scholar 

  20. Desai, S.K. & Gallivan, J.P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J. Am. Chem. Soc. 126, 13247–13254 (2004).

    Article  CAS  Google Scholar 

  21. Fowler, C.C., Brown, E.D. & Li, Y. A FACS-based approach to engineering artificial riboswitches. ChemBioChem 9, 1906–1911 (2008).

    Article  CAS  Google Scholar 

  22. Lynch, S.A. & Gallivan, J.P. A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res. 37, 184–192 (2009).

    Article  CAS  Google Scholar 

  23. Nomura, Y. & Yokobayashi, Y. Dual selection of a genetic switch by a single selection marker. Biosystems 90, 115–120 (2007).

    Article  CAS  Google Scholar 

  24. Topp, S. & Gallivan, J.P. Random walks to synthetic riboswitches—a high-throughput selection based on cell motility. ChemBioChem 9, 210–213 (2008).

    Article  CAS  Google Scholar 

  25. Noderer, W.L. et al. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol. Syst. Biol. 10, 748 (2014).

    Article  Google Scholar 

  26. Goodman, D.B., Church, G.M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475–479 (2013).

    Article  CAS  Google Scholar 

  27. Kinney, J.B., Murugan, A., Callan, C.G. & Cox, E.C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl. Acad. Sci. USA 107, 9158–9163 (2010).

    Article  CAS  Google Scholar 

  28. Gertz, J., Siggia, E.D. & Cohen, B.A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).

    Article  CAS  Google Scholar 

  29. Raveh-Sadka, T. et al. Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat. Genet. 44, 743–750 (2012).

    Article  CAS  Google Scholar 

  30. Shalem, O. et al. Measurements of the impact of 3′ end sequences on gene expression reveal wide range and sequence dependent effects. PLoS Comput. Biol. 9, e1002934 (2013).

    Article  CAS  Google Scholar 

  31. Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521–530 (2012).

    Article  CAS  Google Scholar 

  32. Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    Article  CAS  Google Scholar 

  33. Kosuri, S. et al. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc. Natl. Acad. Sci. USA 110, 14024–14029 (2013).

    Article  CAS  Google Scholar 

  34. Zimmermann, G.R., Shields, T.P., Jenison, R.D., Wick, C.L. & Pardi, A. A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA. Biochemistry 37, 9186–9192 (1998).

    Article  CAS  Google Scholar 

  35. Kennedy, A.B., Liang, J.C. & Smolke, C.D. A versatile cis-blocking and trans-activation strategy for ribozyme characterization. Nucleic Acids Res. 41, e41 (2013).

    Article  CAS  Google Scholar 

  36. Redden, H., Morse, N. & Alper, H.S. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res. doi:10.1111/1567-1364.12188 (2015).

  37. Weigand, J.E. et al. Screening for engineered neomycin riboswitches that control translation initiation. RNA 14, 89–97 (2008).

    Article  CAS  Google Scholar 

  38. Berens, C., Thain, A. & Schroeder, R. A tetracycline-binding RNA aptamer. Bioorg. Med. Chem. 9, 2549–2556 (2001).

    Article  CAS  Google Scholar 

  39. Leontis, N.B., Stombaugh, J. & Westhof, E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).

    Article  CAS  Google Scholar 

  40. Jenison, R.D., Gill, S.C., Pardi, A. & Polisky, B. High-resolution molecular discrimination by RNA. Science 263, 1425–1429 (1994).

    Article  CAS  Google Scholar 

  41. Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006).

    Article  CAS  Google Scholar 

  42. Krueger, F., Andrews, S.R. & Osborne, C.S. Large scale loss of data in low-diversity Illumina sequencing libraries can be recovered by deferred cluster calling. PLoS ONE 6, e16607 (2011).

    Article  CAS  Google Scholar 

  43. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    Article  CAS  Google Scholar 

  44. Milo, R. & Phillips, R. in Cell Biology by the Numbers http://book.bionumbers.org/how-much-cell-to-cell-variability-exists-in-protein-expression/ (2014).

  45. Gietz, R.D. & Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 38–41 (2007).

    Article  CAS  Google Scholar 

  46. Myszka, D.G. Improving biosensor analysis. J. Mol. Recognit. 12, 279–284 (1999).

    Article  CAS  Google Scholar 

  47. Chang, A.L., McKeague, M., Liang, J.C. & Smolke, C.D. Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform. Anal. Chem. 86, 3273–3278 (2014).

    Article  CAS  Google Scholar 

  48. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  49. Chi, Y.-I. et al. Capturing hammerhead ribozyme structures in action by modulating general base catalysis. PLoS Biol. 6, e234 (2008).

    Article  Google Scholar 

  50. Clore, G.M. & Kuszewski, J. Improving the accuracy of NMR structures of RNA by means of conformational database potentials of mean force as assessed by complete dipolar coupling cross-validation. J. Am. Chem. Soc. 125, 1518–1525 (2003).

    Article  CAS  Google Scholar 

  51. Sarver, M., Zirbel, C.L., Stombaugh, J., Mokdad, A. & Leontis, N.B. FR3D: Finding local and composite recurrent structural motifs in RNA 3D structures. J. Math. Biol. 56, 215–252 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. McKeague and C. Schmidt for valuable feedback in the preparation of this manuscript; and C. Crumpton, M. Bigos and B. Gomez of the Stanford Shared FACS facility. This work was supported by funds from the US National Institutes of Health (grants GM086663, AT007886 to C.D.S. and Shared Instrumentation Grant S10RR025518-01), Defense Advanced Research Projects Agency (grant HR0011-11-2-0002 to C.D.S.), the Human Frontiers Science Program (grant RGP0054/2013 to C.D.S.), Natural Sciences and Engineering Research Council of Canada (fellowship to A.B.K.) and Agency for Science, Technology and Research (fellowship to J.S.X.).

Author information

Authors and Affiliations

Authors

Contributions

A.B.K. and B.T. have contributed equally to this work. The author order was chosen at random. A.B.K., B.T. and C.D.S. conceived the project and wrote the manuscript. A.B.K., B.T. and J.S.X. conducted the experiments. B.T. developed the software to analyze the cytometry and NGS data. B.T., A.B.K., J.S.X. and C.D.S. designed the experiments and analyzed the results.

Corresponding author

Correspondence to Christina D Smolke.

Ethics declarations

Competing interests

A.B.K. and C.D.S. are named on a pending patent application relating to RNA devices with ligand-responsive tertiary interactions (US application serial no. 62/186,767).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22, Supplementary Tables 1–9 and Supplementary Notes 1 and 2 (PDF 7216 kb)

Supplementary Data 1

Supplementary Figure 2 source data (XLSX 620 kb)

Supplementary Data 2

Supplementary Figure 3 source data (XLSX 99 kb)

Supplementary Data 3

Supplementary Figure 4 source data (XLSX 42 kb)

Supplementary Data 4

Supplementary Figure 5 source data (XLSX 49 kb)

Supplementary Data 5

Supplementary Figure 6 source data (XLSX 56 kb)

Supplementary Data 6

Supplementary Figure 7 source data (XLSX 295 kb)

Supplementary Data 7

Supplementary Figure 8 source data (XLSX 76 kb)

Supplementary Data 8

Supplementary Figure 10 source data (XLSX 399 kb)

Supplementary Data 9

Supplementary Figure 11 source data (XLSX 400 kb)

Supplementary Data 10

Supplementary Figure 12 source data (XLSX 336 kb)

Supplementary Data 11

Supplementary Figure 13 source data (XLSX 310 kb)

Supplementary Data 12

Supplementary Figure 14 source data (XLSX 155 kb)

Supplementary Data 13

Supplementary Figure 15 source data (XLSX 164 kb)

Supplementary Data 14

Supplementary Figure 16 source data (XLSX 126 kb)

Supplementary Data 15

Supplementary Figure 17 source data (XLSX 301 kb)

Supplementary Data 16

Supplementary Figure 18 source data (XLSX 49 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Townshend, B., Kennedy, A., Xiang, J. et al. High-throughput cellular RNA device engineering. Nat Methods 12, 989–994 (2015). https://doi.org/10.1038/nmeth.3486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing