Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bacterial phytochrome-based optogenetic system controllable with near-infrared light

Abstract

Light-mediated control of protein–protein interactions to regulate cellular pathways is an important application of optogenetics. Here, we report an optogenetic system based on the reversible light-induced binding between the bacterial phytochrome BphP1 and its natural partner PpsR2 from Rhodopseudomonas palustris bacteria. We extensively characterized the BphP1–PpsR2 interaction both in vitro and in mammalian cells and then used this interaction to translocate target proteins to specific cellular compartments, such as the plasma membrane and the nucleus. We showed light-inducible control of cell morphology that resulted in a substantial increase of the cell area. We demonstrated light-dependent gene expression with 40-fold contrast in cultured cells, 32-fold in subcutaneous mouse tissue, and 5.7-fold in deep tissues in mice. Characteristics of the BphP1–PpsR2 optogenetic system include its sensitivity to 740- to 780-nm near-infrared light, its ability to utilize an endogenous biliverdin chromophore in eukaryotes (including mammals), and its spectral compatibility with blue-light-driven optogenetic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral properties of BphP1 and characterization of BphP1–PpsR2 interaction in vitro.
Figure 2: Light-induced relocalization of BphP1 to the plasma membrane.
Figure 3: Light induction of cellular cytoskeletal rearrangements.
Figure 4: Recruitment of BphP1 to the nucleus and light-induced transcription activation.
Figure 5: Light-induced transcription activation in mice.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Shcherbakova, D.M., Shemetov, A.A., Kaberniuk, A.A. & Verkhusha, V.V. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84, 519–550 (2015).

    Article  CAS  Google Scholar 

  2. Motta-Mena, L.B. et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10, 196–202 (2014).

    Article  CAS  Google Scholar 

  3. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    Article  CAS  Google Scholar 

  4. Stierl, M. et al. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol. Chem. 286, 1181–1188 (2011).

    Article  CAS  Google Scholar 

  5. Taslimi, A. et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925 (2014).

    Article  CAS  Google Scholar 

  6. Lee, S. et al. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods 11, 633–636 (2014).

    Article  CAS  Google Scholar 

  7. Ni, M., Tepperman, J.M. & Quail, P.H. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400, 781–784 (1999).

    Article  CAS  Google Scholar 

  8. Levskaya, A., Weiner, O.D., Lim, W.A. & Voigt, C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  Google Scholar 

  9. Gomez, E.J., Gerhardt, K., Judd, J., Tabor, J.J. & Suh, J. Light-activated nuclear translocation of adeno-associated virus nanoparticles using phytochrome B for enhanced, tunable, and spatially programmable gene delivery. ACS Nano. 10, 225–237 (2016).

    Article  CAS  Google Scholar 

  10. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

    Article  CAS  Google Scholar 

  11. Ulijasz, A.T. & Vierstra, R.D. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture. Curr. Opin. Plant Biol. 14, 498–506 (2011).

    Article  CAS  Google Scholar 

  12. Piatkevich, K.D., Subach, F.V. & Verkhusha, V.V. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 42, 3441–3452 (2013).

    Article  CAS  Google Scholar 

  13. Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).

    Article  Google Scholar 

  14. Tran, M.T. et al. In vivo image analysis using iRFP transgenic mice. Exp. Anim. 63, 311–319 (2014).

    Article  CAS  Google Scholar 

  15. Shcherbakova, D.M., Baloban, M. & Verkhusha, V.V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 27, 52–63 (2015).

    Article  CAS  Google Scholar 

  16. Shcherbakova, D.M. & Verkhusha, V.V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).

    Article  CAS  Google Scholar 

  17. Shcherbakova, D.M. et al. Molecular basis of spectral diversity in near-infrared phytochrome-based fluorescent proteins. Chem. Biol. 22, 1540–1551 (2015).

    Article  CAS  Google Scholar 

  18. Piatkevich, K.D., Subach, F.V. & Verkhusha, V.V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nat. Commun. 4, 2153 (2013).

    Article  Google Scholar 

  19. Filonov, G.S. & Verkhusha, V.V. A near-infrared BiFC reporter for in vivo imaging of protein-protein interactions. Chem. Biol. 20, 1078–1086 (2013).

    Article  CAS  Google Scholar 

  20. Auldridge, M.E. & Forest, K.T. Bacterial phytochromes: more than meets the light. Crit. Rev. Biochem. Mol. Biol. 46, 67–88 (2011).

    Article  CAS  Google Scholar 

  21. Ryu, M.H. & Gomelsky, M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth. Biol. 3, 802–810 (2014).

    Article  CAS  Google Scholar 

  22. Ryu, M.H. et al. Engineering adenylate cyclases regulated by near-infrared window light. Proc. Natl. Acad. Sci. USA 111, 10167–10172 (2014).

    Article  CAS  Google Scholar 

  23. Gasser, C. et al. Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc. Natl. Acad. Sci. USA 111, 8803–8808 (2014).

    Article  CAS  Google Scholar 

  24. Wagner, J.R., Zhang, J., Brunzelle, J.S., Vierstra, R.D. & Forest, K.T. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J. Biol. Chem. 282, 12298–12309 (2007).

    Article  CAS  Google Scholar 

  25. Rockwell, N.C. & Lagarias, J.C. A brief history of phytochromes. ChemPhysChem 11, 1172–1180 (2010).

    Article  CAS  Google Scholar 

  26. Rottwinkel, G., Oberpichler, I. & Lamparter, T. Bathy phytochromes in rhizobial soil bacteria. J. Bacteriol. 192, 5124–5133 (2010).

    Article  CAS  Google Scholar 

  27. Kojadinovic, M. et al. Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopseudomonas palustris: enhancement of photosystem synthesis and limitation of respiration. Biochim. Biophys. Acta 1777, 163–172 (2008).

    Article  CAS  Google Scholar 

  28. Bellini, D. & Papiz, M.Z. Structure of a bacteriophytochrome and light-stimulated protomer swapping with a gene repressor. Structure 20, 1436–1446 (2012).

    Article  CAS  Google Scholar 

  29. Hussain, N.K. et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat. Cell Biol. 3, 927–932 (2001).

    Article  CAS  Google Scholar 

  30. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  31. Nobes, C.D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  32. Orth, P., Schnappinger, D., Hillen, W., Saenger, W. & Hinrichs, W. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7, 215–219 (2000).

    Article  CAS  Google Scholar 

  33. Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    Article  CAS  Google Scholar 

  34. Chen, X., Li, T., Wang, X. & Yang, Y. A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes. Biochem. Biophys. Res. Commun. 465, 769–776 (2015).

    Article  CAS  Google Scholar 

  35. Schönig, K., Bujard, H. & Gossen, M. The power of reversibility regulating gene activities via tetracycline-controlled transcription. Methods Enzymol. 477, 429–453 (2010).

    Article  Google Scholar 

  36. Albanese, C., Hulit, J., Sakamaki, T. & Pestell, R.G. Recent advances in inducible expression in transgenic mice. Semin. Cell Dev. Biol. 13, 129–141 (2002).

    Article  CAS  Google Scholar 

  37. Toettcher, J.E., Weiner, O.D. & Lim, W.A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    Article  CAS  Google Scholar 

  38. Müller, K. et al. Synthesis of phycocyanobilin in mammalian cells. Chem. Commun. (Camb.) 49, 8970–8972 (2013).

    Article  Google Scholar 

  39. International Electrotechnical Commission. Safety of Laser Products–Part 1: Equipment Classification and Requirements 3rd edn. (International Electrotechnical Commission, 2014).

  40. Lam, A.J. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9, 1005–1012 (2012).

    Article  CAS  Google Scholar 

  41. Cui, Z., Geurts, A.M., Liu, G., Kaufman, C.D. & Hackett, P.B. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J. Mol. Biol. 318, 1221–1235 (2002).

    Article  CAS  Google Scholar 

  42. Koh, E.Y. et al. An internal ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in mammalian cells. PLoS ONE 8, e82100 (2013).

    Article  Google Scholar 

  43. Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Giraud (Institute for Research and Development, Marseille), M. Papiz (Liverpool University), T. Beatty (University of British Columbia), W. Weber (University of Freiburg), P. Hackett (University of Minnesota), Z. Izsvak (Max Delbrück Center for Molecular Medicine), Y. Yang (East China University of Science and Technology), and S. Masuda (Tokyo Institute of Technology) for plasmids and D. Shcherbakova, K. Chernov, and T. Redchuk for useful suggestions. This work was sponsored by National Institutes of Health grants GM073913, GM108579, and CA164468 to V.V.V.

Author information

Authors and Affiliations

Authors

Contributions

A.A.K. and A.A.S. characterized the proteins in vitro, in mammalian cell culture, and in vivo. V.V.V. planned and directed the project and, together with A.A.K. and A.A.S., designed the experiments, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Vladislav V Verkhusha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1 and 2, and Supplementary Note (PDF 2453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaberniuk, A., Shemetov, A. & Verkhusha, V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat Methods 13, 591–597 (2016). https://doi.org/10.1038/nmeth.3864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing