Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke

Abstract

We present a method to produce vascular disruptions within rat brain parenchyma that targets single microvessels. We used two-photon microscopy to image vascular architecture, to select a vessel for injury and to measure blood-flow dynamics. We irradiated the vessel with high-fluence, ultrashort laser pulses and achieved three forms of vascular insult. (i) Vessel rupture was induced at the highest optical energies; this provides a model for hemorrhage. (ii) Extravasation of blood components was induced near the lowest energies and was accompanied by maintained flow in the target vessel. (iii) An intravascular clot evolved when an extravasated vessel was further irradiated. Such clots dramatically impaired blood flow in downstream vessels, in which speeds dropped to as low as 10% of baseline values. This demonstrates that a single blockage to a microvessel can lead to local cortical ischemia. Lastly, we show that hemodilution leads to a restoration of flow in secondary downstream vessels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Hemorrhage via rupture of target vessel.
Figure 3: Extravasation of blood constituents into the parenchymal tissue without obstruction of flow in target vessel.
Figure 4: Intravascular clot in intact target arteriole.
Figure 5: Histological characterization of intravascular clots.
Figure 6: Changes in RBC velocity around subsurface intravascular clots.
Figure 7: Changes in RBC velocity around an intravascular clot with hemodilution.

Similar content being viewed by others

References

  1. Hudetz, A.G. Percolation phenomenon: The effect of capillary network rarefaction. Microvasc. Res. 45, 1–10 (1993).

    Article  CAS  Google Scholar 

  2. Moody, D.M., Bell, M.A. & Challa, V.R. Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: An anatomic study. AJNR Am. J. Neuroradiol. 11, 431–439 (1990).

    CAS  PubMed  Google Scholar 

  3. Brozici, M., van der Zwain, A. & Hillen, B. Anatomy and functionality of leptomeningeal anastomoses: A review. Stroke 34, 2750–2762 (2003).

    Article  Google Scholar 

  4. Cox, S.B., Woolsey, T.A. & Rovainen, C.M. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J. Cereb. Blood Flow Metab. 13, 899–913 (1993).

    Article  CAS  Google Scholar 

  5. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  6. Wardlaw, J.M., Sandercock, P.A., Dennis, M.S. & Starr, J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34, 806–812 (2003).

    Article  CAS  Google Scholar 

  7. Cullen, K.M., Zoltan, K. & Stone, J . Pericapillary haem-rich deposits: Evidence for microhaemorrhages in aging human cerebral cortex. J. Cereb. Blood Flow Metab. 25, 1656–1667 (2005).

    Article  CAS  Google Scholar 

  8. del Zoppo, G.J. Microvascular changes during cerebral ischemia and reperfusion. Cardiovascular and Brain Metabolism Reviews 6, 47–96 (1994).

    CAS  Google Scholar 

  9. Farkas, E. & Luiten, P.G.M. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64, 575–611 (2001).

    Article  CAS  Google Scholar 

  10. Watson, B.D., Dietrich, W.D., Busto, R., Wachtel, M.S. & Ginsberg, M.D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann. Neurol. 17, 497–504 (1985).

    Article  CAS  Google Scholar 

  11. Haseldonckx, M., van Bedaf, D., van de Ven, M., van Reempts, J. & Borgers, M. Vasogenic oedema and brain infarction in an experimental penumbra model. Acta Neurochir. (Wien) 76 (Suppl.), 105–109 (2000).

    CAS  Google Scholar 

  12. Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003).

    Article  CAS  Google Scholar 

  13. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  Google Scholar 

  14. Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

    Article  CAS  Google Scholar 

  15. Dawson, D.A. & Hallenbeck, J.M. Acute focal ischemia-induced alterations in MAP2 immunostaining: Description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury. J. Cereb. Blood Flow Metab. 16, 170–174 (1996).

    Article  CAS  Google Scholar 

  16. Latov, N. et al. Fibrillary astrocytes proliferate in response to brain injury. Dev. Biol. 72, 381–384 (1979).

    Article  CAS  Google Scholar 

  17. Chapman, J.D., Franko, A.J. & Sharplin, J. A marker for hypoxic cells in tumours with potential clinical applicability. Br. J. Cancer 43, 546–550 (1981).

    Article  CAS  Google Scholar 

  18. Asplund, K. Haemodilution for acute ischaemic stroke (a review). Cochrane Database Syst. Rev. 3, 1–41 (2005).

    Google Scholar 

  19. Sakharov, D.V., Barrett-Bergshoeff, M., Hekkenberg, R.T. & Rijken, D.C. Fibrin-specificity of a plasminogen activator affects the efficiency of fibrinolysis and responsiveness to ultrasound: Comparison of nine plasminogen activators in vitro. Thromb. Haemost. 81, 605–612 (1999).

    CAS  PubMed  Google Scholar 

  20. The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N. Engl. J. Med. 319, 1615–1622 (1993).

  21. Lyden, P.D. Thrombolytic Stroke Therapy, 2nd Edition (Humana Press, New Jersey, 2004).

    Google Scholar 

  22. Skalak, R., Chen, P.H. & Chien, S. Effect of hematocrit and rouleaux on apparent viscosity in capillaries. Biorheology 9, 67–83 (1972).

    Article  CAS  Google Scholar 

  23. Goldman, D. & Popel, A.S. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J. Theor. Biol. 206, 181–194 (2000).

    Article  CAS  Google Scholar 

  24. Schaffer, C.B. et al. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. Public Library of Science, Biology; in the press.

  25. Baron, J.C. Perfusion thresholds in human cerebral ischemia: Historical perspective and therapeutic implications. Cerebrovasc. Dis. 11, 2–8 (2001).

    Article  Google Scholar 

  26. Hossmann, K.A. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 36, 557–565 (1994).

    Article  CAS  Google Scholar 

  27. Zhao, W., Belayev, L. & Ginsberg, M.D. Transient middle cerebral artery occlusion by intraluminal suture II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization. J. Cereb. Blood Flow Metab. 17, 1281–1290 (1997).

    Article  CAS  Google Scholar 

  28. O'Brien, J.T. et al. Vascular cognitive impairment. Lancet Neurol. 2, 89–98 (2003).

    Article  Google Scholar 

  29. Dobrogowska, D.H., Lossinsky, A.S., Tarnawski, M. & Vorbrodt, A.W. Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J. Neurocytol. 27, 163–173 (1998).

    Article  CAS  Google Scholar 

  30. Rosenberg, G.A., Mun-Bryce, S., Wesley, M. & Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke 21, 801–807 (1990).

    Article  CAS  Google Scholar 

  31. Dijkhuizen, R.M., Asahi, M., Wu, O., Rosen, B.R. & Lo, E.H. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke 33, 2100–2104 (2002).

    Article  CAS  Google Scholar 

  32. Kaufman, H.H. et al. A rabbit model of intracerebral hematoma. Acta Neuropathol. (Berl.) 65, 318–321 (1985).

    Article  CAS  Google Scholar 

  33. Fazekas, F. et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: Evidence of microangiopathy-related microbleeds. AJNR Am. J. Neuroradiol. 20, 637–642 (1999).

    CAS  PubMed  Google Scholar 

  34. Lyden, P.D., Jackson-Friedman, C., Shin, C. & Hassid, S. Synergistic combinatorial stroke therapy: A quantal bioassay of a GABA agonist and a glutamate antagonist. Exp. Neurol. 163, 477–489 (2000).

    Article  CAS  Google Scholar 

  35. Longa, E.Z., Weinstein, P.R., Carlson, S. & Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91 (1989).

    Article  CAS  Google Scholar 

  36. Wei, L., Rovainen, C.M. & Woolsey, T.A. Ministrokes in rat barrel cortex. Stroke 26, 1459–1462 (1995).

    Article  CAS  Google Scholar 

  37. Yao, H. et al. Photothrombotic middle cerebral artery occlusion and reperfusion laser system in spontaneously hypertensive rats. Stroke 34, 2716–2721 (2003).

    Article  Google Scholar 

  38. Nakase, H., Kakizaki, T., Miyamoto, K., Hiramatsu, K. & Sakaki, T. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: Cortical vein occlusion model by photochemical dye. Neurosurgery 37, 280–285 (1995).

    Article  CAS  Google Scholar 

  39. Takeo, S., Miyake, K., Minematsu, R., Tanonaka, K. & Konishi, M. In vitro effect of naftidrofuryl oxalate on cerebral mitochondria impaired by microsphere-induced embolism in rats. J. Pharmacol. Exp. Ther. 248, 1207–1214 (1989).

    CAS  PubMed  Google Scholar 

  40. Kudo, M., Aoyama, A., Ichimori, S. & Fukunaga, N. An animal model of cerebral infarction. Homologous blood clot emboli in rats. Stroke 13, 505–508 (1982).

    Article  CAS  Google Scholar 

  41. Futrell, N. et al. A new model of embolic stroke produced by photochemical injury to the carotid artery in the rat. Ann. Neurol. 23, 251–257 (1988).

    Article  CAS  Google Scholar 

  42. Lo, E.H., Dalkara, T. & Moskowitz, M.A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4, 399–415 (2003).

    Article  CAS  Google Scholar 

  43. Kleinfeld, D. & Delaney, K.R. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage sensitive dyes. J. Comp. Neurol. 375, 89–108 (1996).

    Article  CAS  Google Scholar 

  44. Tsai, P.S. et al. Principles, design, and construction of a two photon laser scanning microscope for in vitro and in vivo brain imaging. In In Vivo Optical Imaging of Brain Function (ed. Frostig, R.D. ed.) 113–171 (CRC Press, Boca Raton, 2002).

    Google Scholar 

  45. Tsai, P.S. et al. All-optical histology using ultrashort laser pulses. Neuron 39, 27–41 (2003).

    Article  CAS  Google Scholar 

  46. Backus, S. et al. High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system. Opt. Lett. 26, 465–467 (2001).

    Article  CAS  Google Scholar 

  47. Zhang, R.L., Zhang, Z.G. & Chopp, M. Increased therapeutic efficacy with rt-PA and anti-CD18 antibody treatment of stroke in the rat. Neurology 15, 273–279 (1999).

    Article  Google Scholar 

  48. Korninger, C. & Collen, D. Studies on the specific fibrinolytic effect of human extrinsic (tissue-type) plasminogen activator in human blood and in various animal species in vitro. Thromb. Haemost. 46, 561–565 (1981).

    Article  CAS  Google Scholar 

  49. Scremin, O.U. Cerebral vascular system. In The Rat Nervous System (Paxinos, G. ed.) 3–35 (Academic Press, Inc., San Diego, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank Q. Cheng for assistance with the plasminogen activator experiments, E. Dolnick for assistance with the electronics, D. Pizzo and L. Thal for use of their photomicroscope, L. Schroeder and S. Siegel for discussions, and Coherent, Inc. for the loan of equipment. This work was funded by the David and Lucille Packard Foundation, the National Science Foundation (DBI/0455027), the National Institutes of Health (NS/041096, NS/043300, EB/003832 and RR/021907), a La Jolla Interfaces in Science Postdoctoral Fellowship to C.B.S. and a National Science Foundation Graduate Fellowship to N.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kleinfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, N., Schaffer, C., Friedman, B. et al. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods 3, 99–108 (2006). https://doi.org/10.1038/nmeth844

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth844

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing