Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa

Abstract

Virulence of pathogenic bacteria is a tightly controlled process to facilitate invasion and survival in host tissues. Although pathways controlling virulence have been defined in detail, signals modulating these processes are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa causes acute and chronic infections in humans. Disease progression is typically associated with a loss of acute virulence and the emergence of biofilms and chronic behaviour. The acute-to-chronic switch is governed by the global Gac/Rsm pathway. Using a newly developed acute–chronic dual reporter system we show that calcium stimulates the Gac/Rsm pathway via the Gac-associated hybrid histidine kinase LadS. We show that calcium binds to the periplasmic DISMED2 sensor domain of LadS to activate its kinase activity. Activation of the Gac/Rsm pathway by calcium leads to a switch to the chronic program and confers drug tolerance by reducing P. aeruginosa growth rate. Clinical isolates from cystic fibrosis airways retain their calcium response during chronic infections. Our data imply that calcium sensing evolved as an adaptation to the opportunistic lifestyle of P. aeruginosa and that calcium serves as a host signal to balance acute-to-chronic behaviour during infections. Establishing calcium signalling in host–pathogen interaction adds to growing evidence indicating key roles for calcium in bacterial signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcium stimulates the Gac/Rsm cascade.
Figure 2: LadS is required for calcium-mediated stimulation of the Gac/Rsm cascade.
Figure 3: LadS senses calcium through the periplasmic DISMED2 domain.
Figure 4: The calcium-induced LadS regulon overlaps with known Gac/RsmA targets.
Figure 5: Activation of the Gac/Rsm cascade leads to reduced growth and increased drug tolerance.
Figure 6: Calcium sensing is retained in clinical isolates from chronically infected CF patients.

Similar content being viewed by others

References

  1. Vakulskas, C. A., Potts, A. H., Babitzke, P. & Ahmer, B. M. M. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. 79, 193–224 (2015).

    Article  CAS  Google Scholar 

  2. Gonzalez Chavez, R., Alvarez, A. F., Romeo, T. & Georgellis, D. The physiological stimulus for the barA sensor kinase. J. Bacteriol. 192, 2009–2012 (2010).

    Article  Google Scholar 

  3. Lawhon, S. D., Maurer, R., Suyemoto, M. & Altier, C. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 46, 1451–1464 (2002).

    Article  CAS  Google Scholar 

  4. LeRoux, M. et al. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. eLife 4, e05701 (2015).

    Article  Google Scholar 

  5. Heeb, S., Blumer, C. & Haas, D. Regulatory RNA as mediator in gacA/rsmA-dependent global control of exoproduct formation in Pseudomonas regulatory RNA as mediator in gacA/rsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J. Bacteriol. 184, 1046–1056 (2002).

    Article  CAS  Google Scholar 

  6. Cystic Fibrosis Foundation Patient Registry 2013 Annual Data Report to the Center Directors (Cystic Fibrosis Foundation, 2014); https://www.cff.org/2013_CFF_Annual_Data_Report_to_the_Center_Directors.pdf

  7. Cullen, L. & McClean, S. Bacterial adaptation during chronic respiratory infections. Pathogens 4, 66–89 (2015).

    Article  Google Scholar 

  8. Sousa, A. & Pereira, M. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs—a review. Pathogens 3, 680–703 (2014).

    Article  Google Scholar 

  9. Goodman, A. L. et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754 (2004).

    Article  CAS  Google Scholar 

  10. Goodman, A. L. et al. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev. 23, 249–259 (2009).

    Article  CAS  Google Scholar 

  11. Brencic, A. & Lory, S. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol. Microbiol. 72, 612–632 (2009).

    Article  CAS  Google Scholar 

  12. Kay, E. et al. Two gacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J. Bacteriol. 188, 6026–6033 (2006).

    Article  CAS  Google Scholar 

  13. Brencic, A. et al. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73, 434–445 (2009).

    Article  CAS  Google Scholar 

  14. Ventre, I. et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl Acad. Sci. USA 103, 171–176 (2006).

    Article  CAS  Google Scholar 

  15. Yahr, T. L. & Wolfgang, M. C. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol. Microbiol. 62, 631–640 (2006).

    Article  CAS  Google Scholar 

  16. Dasgupta, N., Ashare, A., Hunninghake, G. W. & Yahr, T. L. Transcriptional induction of the Pseudomonas aeruginosa type III secretion system by low Ca2+ and host cell contact proceeds through two distinct signaling pathways. Infect. Immun. 74, 3334–3341 (2006).

    Article  CAS  Google Scholar 

  17. Mccaw, M. L. et al. Exsd is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol. Microbiol. 46, 1123–1133 (2002).

    Article  CAS  Google Scholar 

  18. Mulcahy, H., O'Callaghan, J., O'Grady, E. P., Adams, C. & O'Gara, F. The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect. Immun. 74, 3012–3015 (2006).

    Article  CAS  Google Scholar 

  19. Zuber, S. et al. Gacs sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol. Plant Microbe Interact. 16, 634–644 (2003).

    Article  CAS  Google Scholar 

  20. Kong, W. et al. Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol. Microbiol. 88, 784–797 (2013).

    Article  CAS  Google Scholar 

  21. Groisman, E. A. The pleiotropic two-component regulatory system phoP-PhoQ. J. Bacteriol. 183, 1835–1842 (2001).

    Article  CAS  Google Scholar 

  22. Sarkisova, S. A. et al. A Pseudomonas aeruginosa EF-Hand protein, efhP (PA4107), modulates stress responses and virulence at high calcium concentration. PLoS ONE 9, e98985 (2014).

    Article  Google Scholar 

  23. Mikkelsen, H., McMullan, R. & Filloux, A. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS ONE 6, e29113 (2011).

    Article  CAS  Google Scholar 

  24. Rigden, D. J. & Galperin, M. Y. The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution. J. Mol. Biol. 343, 971–984 (2004).

    Article  CAS  Google Scholar 

  25. Basu Roy, A. & Sauer, K. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol. Microbiol. 94, 771–793 (2014).

    Article  CAS  Google Scholar 

  26. Rybtke, M. T. et al. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 78, 5060–5069 (2012).

    Article  CAS  Google Scholar 

  27. Heeb, S. & Haas, D. Regulatory roles of the gacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol. Plant Microbe Interact. 14, 1351–1363 (2001).

    Article  CAS  Google Scholar 

  28. Burrowes, E., Baysse, C., Adams, C. & O'Gara, F. Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152, 405–418 (2006).

    Article  CAS  Google Scholar 

  29. Wolfgang, M. C., Lee, V. T., Gilmore, M. E. & Lory, S. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell 4, 253–263 (2003).

    Article  CAS  Google Scholar 

  30. Claudi, B. et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158, 722–733 (2014).

    Article  CAS  Google Scholar 

  31. Helaine, S. et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014).

    Article  CAS  Google Scholar 

  32. Wotman, S., Mandel, I. D., Mercadante, J. & Denning, C. R. Parotid and submaxillary calcium in human cystic fibrosis. Arch. Oral Biol. 16, 663–665 (1971).

    Article  CAS  Google Scholar 

  33. Shapiro, B. L. & Lam, L. F. Calcium and age in fibroblasts from control subjects and patients with cystic fibrosis. Science 216, 417–419 (1982).

    Article  CAS  Google Scholar 

  34. von Ruecker, A. A., Bertele, R. & Harms, H. K. Calcium metabolism and cystic fibrosis: mitochondrial abnormalities suggest a modification of the mitochondrial membrane. Pediatr. Res. 18, 594–599 (1984).

    Article  CAS  Google Scholar 

  35. Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA 103, 8487–8492 (2006).

    Article  CAS  Google Scholar 

  36. Jain, M. et al. Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J. Clin. Microbiol. 42, 5229–5237 (2004).

    Article  Google Scholar 

  37. Vincent, F. et al. Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Environ. Microbiol. 12, 1775–1786 (2010).

    Article  CAS  Google Scholar 

  38. Cioci, G. et al. Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett. 555, 297–301 (2003).

    Article  CAS  Google Scholar 

  39. Suzuki, T., Takagi, T., Furukohri, T., Kawamura, K. & Nakauchi, M. A calcium-dependent galactose-binding lectin from the tunicate Polyandrocarpa misakiensis. Isolation, characterization, and amino acid sequence. J. Biol. Chem. 265, 1274–1281 (1990).

    CAS  PubMed  Google Scholar 

  40. Jamal-Talabani, S. et al. Ab initio structure determination and functional characterization of CBM36. Structure 12, 1177–1187 (2004).

    Article  CAS  Google Scholar 

  41. Bolam, D. N. et al. X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J. Biol. Chem. 279, 22953–22963 (2004).

    Article  CAS  Google Scholar 

  42. Loris, R., Tielker, D., Jaeger, K. & Wyns, L. Structural basis of carbohydrate recognition by the lectin lecB from Pseudomonas aeruginosa. J. Mol. Biol. 331, 861–870 (2003).

    Article  CAS  Google Scholar 

  43. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  44. Jones, H. E., Holland, I. B. & Campbell, A. K. Direct measurement of free Ca2+ shows different regulation of Ca2+ between the periplasm and the cytosol of Escherichia coli. Cell Calcium 32, 183–192 (2002).

    Article  CAS  Google Scholar 

  45. Guragain, M., Lenaburg, D. L., Moore, F. S., Reutlinger, I. & Patrauchan, M. A. Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility. Cell Calcium 54, 350–361 (2013).

    Article  CAS  Google Scholar 

  46. Onek, L. A. & Smith, R. J. Calmodulin and calcium mediated regulation in prokaryotes. J. Gen. Microbiol. 138, 1039–1049 (1992).

    Article  CAS  Google Scholar 

  47. Fry, I. J., Becker-Hapak, M. & Hageman, J. H. Purification and properties of an intracellular calmodulinlike protein from Bacillus subtilis cells. J. Bacteriol. 173, 2506–2513 (1991).

    Article  CAS  Google Scholar 

  48. O'Hara, M. B. & Hageman, J. H. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J. Bacteriol. 172, 4161–4170 (1990).

    Article  CAS  Google Scholar 

  49. Inouye, S., Franceschini, T. & Inouye, M. Structural similarities between the development-specific protein S from a Gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc. Natl Acad. Sci. USA 80, 6829–6833 (1983).

    Article  CAS  Google Scholar 

  50. Lee, V. T., Mazmanian, S. K. & Schneewind, O. A program of Yersinia enterocolitica type III secretion reactions is activated by specific signals. J. Bacteriol. 183, 4970–4978 (2001).

    Article  CAS  Google Scholar 

  51. Frank, D. W. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol. Microbiol. 26, 621–629 (1997).

    Article  CAS  Google Scholar 

  52. Morgan, A. F. Transduction of Pseudomonas aeruginosa with a mutant of bacteriophage E79. J. Bacteriol. 139, 137–140 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Malone, J. G. et al. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog. 6, e1000804 (2010).

    Article  Google Scholar 

  54. Choi, K.-H. & Schweizer, H. P. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol. 5, 30 (2005).

    Article  Google Scholar 

  55. Voisard, C. et al. in Molecular Ecology of Rhizosphere Microorganisms (eds O'Gara, F., Dowling, D. & Boesten, B. ) 69–89 (Wiley, 1994).

    Google Scholar 

  56. Thanbichler, M., Iniesta, A. A. & Shapiro, L. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35, e137 (2007).

    Article  Google Scholar 

  57. Deuschle, K. et al. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18, 2314–2325 (2006).

    Article  CAS  Google Scholar 

  58. Radhakrishnan, S. K., Thanbichler, M. & Viollier, P. H. The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus. Genes Dev. 22, 212–225 (2008).

    Article  CAS  Google Scholar 

  59. Choi, K.-H. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2, 443–448 (2005).

    Article  CAS  Google Scholar 

  60. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  61. Glatter, T. et al. Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J. Proteome Res. 11, 5145–5156 (2012).

    Article  CAS  Google Scholar 

  62. Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Manfredi for help with sequence analysis, B. Laventie for help with manuscript editing, J. Malone for bacterial strains and I. Attrée for the mini-CTX-PilV-GFP plasmid. This work was supported by a Werner Siemens PhD Fellowship to U.N.B. and by Swiss National Science Foundation grant 310030B_147090 to U.J.

Author information

Authors and Affiliations

Authors

Contributions

U.N.B. and U.J. designed the study, performed the analyses and wrote the paper. U.N.B. and T.J. collected and processed data.

Corresponding author

Correspondence to Urs Jenal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–11, Supplementary Table 1, legends for Supplementary Videos 1 and 2, Supplementary References (PDF 14697 kb)

Supplementary Video 1

Shift from high calcium to low calcium conditions (AVI 7688 kb)

Supplementary Video 2

Shift from low calcium to high calcium conditions (AVI 6779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broder, U., Jaeger, T. & Jenal, U. LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat Microbiol 2, 16184 (2017). https://doi.org/10.1038/nmicrobiol.2016.184

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.184

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology