Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom

Abstract

Marine phytoplankton perform approximately half of global carbon fixation, with their blooms contributing disproportionately to carbon sequestration1, and most phytoplankton production is ultimately consumed by heterotrophic prokaryotes2. Therefore, phytoplankton and heterotrophic community dynamics are important in modelling carbon cycling and the impacts of global change3. In a typical bloom, diatoms dominate initially, transitioning over several weeks to smaller and motile phytoplankton4. Here, we show unexpected, rapid community variation from daily rRNA analysis of phytoplankton and prokaryotic community members following a bloom off southern California. Analysis of phytoplankton chloroplast 16S rRNA demonstrated ten different dominant phytoplankton over 18 days alone, including four taxa with animal toxin-producing strains. The dominant diatoms, flagellates and picophytoplankton varied dramatically in carbon export potential. Dominant prokaryotes also varied rapidly. Euryarchaea briefly became the most abundant organism, peaking over a few days to account for about 40% of prokaryotes. Phytoplankton and prokaryotic communities correlated better with each other than with environmental parameters. Extending beyond the traditional view of blooms being controlled primarily by physics and inorganic nutrients, these dynamics imply highly heterogeneous, continually changing conditions over time and/or space and suggest that interactions among microorganisms are critical in controlling plankton diversity, dynamics and fates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of eukaryotic phytoplankton taxa (99% operational taxonomic units (OTUs)) as measured by 16S rRNA sequences of chloroplasts.
Figure 2: Dynamics of bacterial and archaeal 99% OTUs.
Figure 3: Correlations among biotic and abiotic parameters indicate stronger relationships between populations of microorganisms than to other bulk environmental parameters.

Similar content being viewed by others

References

  1. Ducklow, H. W., Steinberg, D. K. & Buesseler, K. O. Upper ocean carbon export and the biological pump. Oceanography 14, 50–58 (2001).

    Article  Google Scholar 

  2. Kirchman, D. L. Processes in Microbial Ecology (Oxford Univ. Press, 2012).

    Google Scholar 

  3. Hutchins, D. A., Mulholland, M. R. & Fu, F. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22, 128–145 (2009).

    Article  Google Scholar 

  4. Miller, C. B. Biological Oceanography (Blackwell, 2004).

    Google Scholar 

  5. Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).

    Article  Google Scholar 

  6. Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).

    Article  Google Scholar 

  7. Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nature Rev. Microbiol. 12, 686–698 (2014).

    Article  Google Scholar 

  8. Ducklow, H. W., Kirchman, D. L., Quinby, H. L., Carlson, C. A. & Dam, H. G. Stocks and dynamics of bacterioplankton carbon during the spring bloom in the eastern North Atlantic Ocean. Deep-Sea. Res. II 40, 245–263 (1993).

    Article  Google Scholar 

  9. Mayali, X., Palenik, B. & Burton, R. S. Dynamics of marine bacterial and phytoplankton populations using multiplex liquid bead. Environ. Microbiol. 12, 975–989 (2010).

    Article  Google Scholar 

  10. Lindh, M. V. et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ. Microbiol. 17, 2459–2476 (2015).

    Article  Google Scholar 

  11. Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).

    Article  Google Scholar 

  12. Orsi, W. D. et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 9, 1747–1763 (2015).

    Article  Google Scholar 

  13. Mincer, T. J. et al. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ. Microbiol. 9, 1162–1175 (2007).

    Article  Google Scholar 

  14. Parada, A., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time-series and global field samples. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.13023 (2015).

  15. Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).

    Article  Google Scholar 

  16. Mann, D. G. in Cytology, Genetics and Molecular Biology of Algae (eds Chaudhary, B. R. & Agrawal, S. B. ) 249–274 (SPB Academic, 1996).

    Google Scholar 

  17. Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).

    Article  Google Scholar 

  18. Koumandou, V. L., Nisbet, R. E. R., Barbrook, A. C. & Howe, C. J. Dinoflagellate chloroplasts—where have all the genes gone? Trends Genet. 20, 261–267 (2004).

    Article  Google Scholar 

  19. De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    Article  Google Scholar 

  20. Rossini, G. P. Toxins and Biologically Active Compounds from Microalgae: Biological Effects and Risk Management Vol. 2 (CRC Press, 2014).

    Book  Google Scholar 

  21. Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res. 53, 43–66 (2005).

    Article  Google Scholar 

  22. Bienfang, P. K. Sinking rates of heterogeneous, temperate phytoplankton populations. J. Plankton Res. 3, 235–253 (1981).

    Article  Google Scholar 

  23. Granéli, E., Salomon, P. S. & Fistarol, G. O. in Algal Toxins: Nature, Occurrence, Effect and Detection 159–178 (Springer, 2008).

    Book  Google Scholar 

  24. Klaas, C. & Archer, D. E. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem. Cycles 16, 1–14 (2002).

    Article  Google Scholar 

  25. Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nature Rev. Microbiol. 13, 133–146 (2015).

    Article  Google Scholar 

  26. Lie, A. A. Y., Kim, D. Y., Schnetzer, A. & Caron, D. A. Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean time-series station off the coast of southern California. Aquat. Microb. Ecol. 70, 93–110 (2013).

    Article  Google Scholar 

  27. Thompson, A. W. et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337, 1546–1550 (2012).

    Article  Google Scholar 

  28. Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    Article  Google Scholar 

  29. Lima-Mendez, G. et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    Article  Google Scholar 

  30. Vergin, K. L. et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J. 7, 1322–1332 (2013).

    Article  Google Scholar 

  31. Noble, R. T. & Fuhrman, J. A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).

    Article  Google Scholar 

  32. Needham, D. M. et al. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J. 7, 1274–1285 (2013).

    Article  Google Scholar 

  33. Fuhrman, J. A., Comeau, D. E., Hagstrom, A. & Chan, A. M. Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl. Environ. Microbiol. 54, 1426–1429 (1988).

    Google Scholar 

  34. Countway, P. D., Gast, R. J., Savai, P. & Caron, D. A. Protistan diversity estimates based on 18S rDNA from seawater incubations in the western North Atlantic. J. Eukaryot. Microbiol. 52, 95–106 (2005).

    Article  Google Scholar 

  35. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998 (2013).

    Article  Google Scholar 

  36. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010).

    Article  Google Scholar 

  37. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  Google Scholar 

  38. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article  Google Scholar 

  39. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  Google Scholar 

  40. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  Google Scholar 

  41. Jeraldo, P. et al. IM-TORNADO: a tool for comparison of 16S reads from paired-end libraries. PLoS ONE 9, e114804 (2014).

    Article  Google Scholar 

  42. Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).

    Article  Google Scholar 

  43. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  Google Scholar 

  44. Oksanen, A. J. et al. vegan: Community Ecology Package (2015); http://vegan.r-forge.r-project.org/.

    Google Scholar 

  45. Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5, S15 (2011).

    Article  Google Scholar 

  46. Xia, L. C., Ai, D., Cram, J. A., Fuhrman, J. A. & Sun, F. Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinformatics 29, 230–237 (2013).

    Article  Google Scholar 

  47. Storey, J. D. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann. Stat. 31, 2013–2035 (2003).

    Article  Google Scholar 

  48. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the USC Wrigley Institute of Environmental Science and thank R. Marinelli, S. Conner, G. Boivin and the crew of the Miss Christie for sampling opportunities and laboratory space, and J. Chang, C. Chow, A. Lie, S. McCallister and E. Teel for sampling assistance. The authors thank D. Caron, F. Corsetti, J. Heidelberg, E. Webb, N. Ahlgren, L. Berdjeb, J. Cram, D. Comeau, L. Gómez Consarnau, E. Fichot, M. Lee, A. Parada, B. Phillips, G. Ramirez and E. Sieradzki for discussion and feedback on the manuscript, along with R. Sachdeva who also provided computer support. This work was supported by NSF grants 1031743 and 1136818, grant GBMF3779 from the Gordon and Betty Moore Foundation Marine Microbiology Initiative and a National Science Foundation Graduate Student Research Fellowship to D.M.N.

Author information

Authors and Affiliations

Authors

Contributions

D.M.N. and J.A.F. designed the study, performed the research, analysed the data and wrote the paper.

Corresponding author

Correspondence to Jed A. Fuhrman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Table 1, References and Definitions. (PDF 3783 kb)

Supplementary Data Set 1

Full OTU IDs, taxonomic descriptions and abbreviations. (XLSX 2763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Needham, D., Fuhrman, J. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol 1, 16005 (2016). https://doi.org/10.1038/nmicrobiol.2016.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene