Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release

Abstract

Spontaneous 'mini' release occurs at all synapses, but its nature remains enigmatic. We found that >95% of spontaneous release in murine cortical neurons was induced by Ca2+-binding to synaptotagmin-1 (Syt1), the Ca2+ sensor for fast synchronous neurotransmitter release. Thus, spontaneous and evoked release used the same Ca2+-dependent release mechanism. As a consequence, Syt1 mutations that altered its Ca2+ affinity altered spontaneous and evoked release correspondingly. Paradoxically, Syt1 deletions (as opposed to point mutations) massively increased spontaneous release. This increased spontaneous release remained Ca2+ dependent but was activated at lower Ca2+ concentrations and with a lower Ca2+ cooperativity than synaptotagmin-driven spontaneous release. Thus, in addition to serving as a Ca2+ sensor for spontaneous and evoked release, Syt1 clamped a second, more sensitive Ca2+ sensor for spontaneous release that resembles the Ca2+ sensor for evoked asynchronous release. These data suggest that Syt1 controls both evoked and spontaneous release at a synapse as a simultaneous Ca2+-dependent activator and clamp of exocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous miniature release is Ca2+ dependent in wild-type and Syt1 knockout synapses.
Figure 2: Enhanced frequency, increased apparent Ca2+ affinity and decreased Ca2+ cooperativity of spontaneous release in Syt1−/− synapses.
Figure 3: Knockin mutations altering the apparent Ca2+ affinity of Syt1 cause corresponding changes in the apparent Ca2+ affinity of evoked release.
Figure 4: Knockin mutations altering the apparent Ca2+ affinity of Syt1 cause corresponding changes in the apparent Ca2+ affinity of spontaneous release.
Figure 5: Knockin mutations in Syt1 alter spontaneous release monitored in acute slices.
Figure 6: Syt1 clamping of spontaneous release requires intact Syt1 Ca2+-binding sites.
Figure 7: Membrane proximity of Syt1 C2 domains contributes to evoked, but not spontaneous, release.

Similar content being viewed by others

References

  1. Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  2. Glitsch, M.D. Spontaneous neurotransmitter release and Ca2+—how spontaneous is spontaneous neurotransmitter release? Cell Calcium 43, 9–15 (2008).

    Article  CAS  Google Scholar 

  3. Chung, C. & Kavalali, E.T. Seeking a function for spontaneous neurotransmission. Nat. Neurosci. 9, 989–990 (2006).

    Article  CAS  Google Scholar 

  4. Deitcher, D.L. et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci. 18, 2028–2039 (1998).

    Article  CAS  Google Scholar 

  5. Atasoy, D. et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J. Neurosci. 28, 10151–10166 (2008).

    Article  CAS  Google Scholar 

  6. Sara, Y., Virmani, T., Deák, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45, 563–573 (2005).

    Article  CAS  Google Scholar 

  7. McKinney, R.A., Capogna, M., Dürr, R., Gähwiler, B.H. & Thompson, S.M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  Google Scholar 

  8. Carter, A.G. & Regehr, W.G. Quantal events shape cerebellar interneuron firing. Nat. Neurosci. 5, 1309–1318 (2002).

    Article  CAS  Google Scholar 

  9. Sutton, M.A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    Article  CAS  Google Scholar 

  10. Prestwich, S.A., Forda, S.R. & Dolphin, A.C. Adenosine antagonists increase spontaneous and evoked transmitter release from neuronal cells in culture. Brain Res. 405, 130–139 (1987).

    Article  CAS  Google Scholar 

  11. Léna, C., Changeux, J.P. & Mulle, C. Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J. Neurosci. 13, 2680–2688 (1993).

    Article  Google Scholar 

  12. Barazangi, N. & Role, L.W. Nicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala. J. Neurophysiol. 86, 463–474 (2001).

    Article  CAS  Google Scholar 

  13. Lambe, E.K., Picciotto, M.R. & Aghajanian, G.K. Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28, 216–225 (2003).

    Article  CAS  Google Scholar 

  14. Radcliffe, K.A., Fisher, J.L., Gray, R. & Dani, J.A. Nicotinic modulation of glutamate and GABA synaptic transmission of hippocampal neurons. Ann. NY Acad. Sci. 868, 591–610 (1999).

    Article  CAS  Google Scholar 

  15. Simkus, C.R. & Stricker, C. The contribution of intracellular calcium stores to mEPSCs recorded in layer II neurons of rat barrel cortex. J. Physiol. (Lond.) 545, 521–535 (2002).

    Article  CAS  Google Scholar 

  16. Grillner, P., Berretta, N., Bernardi, G., Svensson, T.H. & Mercuri, N.B. Muscarinic receptors depress GABAergic synaptic transmission in rat midbrain dopamine neurons. Neuroscience 96, 299–307 (2000).

    Article  CAS  Google Scholar 

  17. Llano, I. et al. Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat. Neurosci. 3, 1256–1265 (2000).

    Article  CAS  Google Scholar 

  18. Emptage, N.J., Reid, C.A. & Fine, A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry and spontaneous transmitter release. Neuron 29, 197–208 (2001).

    Article  CAS  Google Scholar 

  19. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 15, 665–674 (2008).

    Article  CAS  Google Scholar 

  20. Yoshihara, M., Adolfsen, B. & Littleton, J.T. Is synaptotagmin the calcium sensor? Curr. Opin. Neurobiol. 13, 315–323 (2003).

    Article  CAS  Google Scholar 

  21. Söllner, T.H. Regulated exocytosis and SNARE function. Mol. Membr. Biol. 20, 209–220 (2003).

    Article  Google Scholar 

  22. Xu, J., Mashimo, T. & Sudhof, T.C. Synaptotagmin-1, -2 and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54, 567–581 (2007).

    Article  CAS  Google Scholar 

  23. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  Google Scholar 

  24. Schoch, S. et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117–1122 (2001).

    Article  CAS  Google Scholar 

  25. Delgado-Martínez, I., Nehring, R.B. & Sørensen, J.B. Differential abilities of SNAP-25 homologs to support neuronal function. J. Neurosci. 27, 9380–9391 (2007).

    Article  Google Scholar 

  26. Littleton, J.T., Stern, M., Perin, M. & Bellen, H.J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl. Acad. Sci. USA 91, 10888–10892 (1994).

    Article  CAS  Google Scholar 

  27. Maximov, A. & Südhof, T.C. Autonomous function of synaptotagmin 1 in triggering asynchronous release independent of asynchronous release. Neuron 48, 547–554 (2005).

    Article  CAS  Google Scholar 

  28. Pang, Z.P., Sun, J., Rizo, J., Maximov, A. & Südhof, T.C. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J. 25, 2039–2050 (2006).

    Article  CAS  Google Scholar 

  29. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  30. Elmqvist, D. & Feldman, D.S. Calcium dependence of spontaneous acetylcholine release at mammalian motor nerve terminals. J. Physiol. (Lond.) 181, 487–497 (1965).

    Article  CAS  Google Scholar 

  31. Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  Google Scholar 

  32. Fernández-Chacón, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  Google Scholar 

  33. Pang, Z.P., Shin, O.-H., Meyer, A.C., Rosenmund, C. & Südhof, T.C. A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent SNARE-complex binding in synaptic exocytosis. J. Neurosci. 26, 12556–12565 (2006).

    Article  CAS  Google Scholar 

  34. Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M. & Reist, N.E. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418, 340–344 (2002).

    Article  CAS  Google Scholar 

  35. Nishiki, T. & Augustine, G.J. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. J. Neurosci. 24, 8542–8550 (2004).

    Article  CAS  Google Scholar 

  36. Stevens, C.F. & Sullivan, J.M. The synaptotagmin C2A domain is part of the calcium sensor controlling fast synaptic transmission. Neuron 39, 299–308 (2003).

    Article  CAS  Google Scholar 

  37. Sun, J. et al. A dual Ca2+ sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).

    Article  CAS  Google Scholar 

  38. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  CAS  Google Scholar 

  39. Bollmann, J.H., Sakmann, B. & Borst, J.G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  CAS  Google Scholar 

  40. Otsu, Y. et al. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 24, 420–433 (2004).

    Article  CAS  Google Scholar 

  41. Hagler, D.J. Jr. & Goda, Y. Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. J. Neurophysiol. 85, 2324–2334 (2001).

    Article  CAS  Google Scholar 

  42. Ubach, J., Zhang, X., Shao, X., Südhof, T.C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 17, 3921–3930 (1998).

    Article  CAS  Google Scholar 

  43. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32, 1057–1069 (2001).

    Article  CAS  Google Scholar 

  44. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  Google Scholar 

  45. Han, W. et al. N-glycosylation is essential for vesicular targeting of synaptotagmin 1. Neuron 41, 85–99 (2004).

    Article  CAS  Google Scholar 

  46. Maximov, A., Pang, Z.P., Tervo, D.G. & Südhof, T.C. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J. Neurosci. Methods 161, 75–87 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Kornblum, J. Mitchell, L. Fan and A. Roth for excellent technical assistance, and A. Maximov and C. Zhang for advice.

Author information

Authors and Affiliations

Authors

Contributions

J.X., Z.P.P. and O.-H.S. planned, performed and analyzed the experiments. T.C.S. conceived the project, supervised the experiments and wrote the paper.

Corresponding author

Correspondence to Thomas C Südhof.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 5055 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Pang, Z., Shin, OH. et al. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci 12, 759–766 (2009). https://doi.org/10.1038/nn.2320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing