Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport

Abstract

Astrocytes are critical participants in synapse development and function, but their role in synaptic plasticity is unclear. Eph receptors and their ephrin ligands have been suggested to regulate neuron-glia interactions, and EphA4-mediated ephrin reverse signaling is required for synaptic plasticity in the hippocampus. Here we show that long-term potentiation (LTP) at the CA3–CA1 synapse is modulated by EphA4 in the postsynaptic CA1 cell and by ephrin-A3, a ligand of EphA4 that is found in astrocytes. Lack of EphA4 increased the abundance of glial glutamate transporters, and ephrin-A3 modulated transporter currents in astrocytes. Pharmacological inhibition of glial glutamate transporters rescued the LTP defects in EphA4 (Epha4) and ephrin-A3 (Efna3) mutant mice. Transgenic overexpression of ephrin-A3 in astrocytes reduces glutamate transporter levels and produces focal dendritic swellings possibly caused by glutamate excitotoxicity. These results suggest that EphA4/ephrin-A3 signaling is a critical mechanism for astrocytes to regulate synaptic function and plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EphA4 is required for LTP in postsynaptic CA1 cells.
Figure 2: Ephrin-A3 is required for TBS-induced LTP.
Figure 3: Upregulation of GLAST and GLT-1 protein levels in Epha4 mutants.
Figure 4: Astrocytic glutamate transporter currents.
Figure 5: Glutamate levels, postsynaptic responses to high frequency stimulation and pharmacological rescue of LTP.
Figure 6: Ephrin-A3 overexpression in astrocytes reduces glutamate transporters.
Figure 7: Ephrin-A3 overexpression in astrocytes increases susceptibility to excitotoxicity and seizures.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Allen, N.J. & Barres, B.A. Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 15, 542–548 (2005).

    Article  CAS  Google Scholar 

  2. Barres, B.A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    Article  CAS  Google Scholar 

  3. Halassa, M.M., Fellin, T. & Haydon, P.G. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med. 13, 54–63 (2007).

    Article  CAS  Google Scholar 

  4. Bergles, D.E. & Jahr, C.E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci. 18, 7709–7716 (1998).

    Article  CAS  Google Scholar 

  5. Tzingounis, A.V. & Wadiche, J.I. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat. Rev. Neurosci. 8, 935–947 (2007).

    Article  CAS  Google Scholar 

  6. Pita-Almenar, J.D., Collado, M.S., Colbert, C.M. & Eskin, A. Different mechanisms exist for the plasticity of glutamate reuptake during early long-term potentiation (LTP) and late LTP. J. Neurosci. 26, 10461–10471 (2006).

    Article  CAS  Google Scholar 

  7. Genoud, C. et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4, e343 (2006).

    Article  Google Scholar 

  8. Essmann, C.L. et al. Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors. Nat. Neurosci. 11, 1035–1043 (2008).

    Article  CAS  Google Scholar 

  9. Klein, R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat. Neurosci. 12, 15–20 (2009).

    Article  CAS  Google Scholar 

  10. Kayser, M.S., Nolt, M.J. & Dalva, M.B. EphB receptors couple dendritic filopodia motility to synapse formation. Neuron 59, 56–69 (2008).

    Article  CAS  Google Scholar 

  11. Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y. & Pasquale, E.B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6, 153–160 (2003).

    Article  CAS  Google Scholar 

  12. Grunwald, I.C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat. Neurosci. 7, 33–40 (2004).

    Article  CAS  Google Scholar 

  13. Grunwald, I.C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    Article  CAS  Google Scholar 

  14. Henderson, J.T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

    Article  CAS  Google Scholar 

  15. Dalva, M.B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    Article  CAS  Google Scholar 

  16. Bouzioukh, F. et al. Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation but not long-term depression. J. Neurosci. 27, 11279–11288 (2007).

    Article  CAS  Google Scholar 

  17. Kullander, K. et al. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 29, 73–84 (2001).

    Article  CAS  Google Scholar 

  18. Tsien, J.Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  Google Scholar 

  19. Carmona, M.A., Murai, K.K., Wang, L., Roberts, A.J. & Pasquale, E.B. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc. Natl. Acad. Sci. USA 106, 12524–12529 (2009).

    Article  CAS  Google Scholar 

  20. Tremblay, M.E. et al. Localization of EphA4 in axon terminals and dendritic spines of adult rat hippocampus. J. Comp. Neurol. 501, 691–702 (2007).

    Article  Google Scholar 

  21. Albensi, B.C., Oliver, D.R., Toupin, J. & Odero, G. Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp. Neurol. 204, 1–13 (2007).

    Article  Google Scholar 

  22. Beart, P.M. & O'Shea, R.D. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol. 150, 5–17 (2007).

    Article  CAS  Google Scholar 

  23. Liu, G., Choi, S. & Tsien, R.W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22, 395–409 (1999).

    Article  CAS  Google Scholar 

  24. Oliet, S.H., Piet, R. & Poulain, D.A. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292, 923–926 (2001).

    Article  CAS  Google Scholar 

  25. Tsukada, S., Iino, M., Takayasu, Y., Shimamoto, K. & Ozawa, S. Effects of a novel glutamate transporter blocker, (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), on activities of hippocampal neurons. Neuropharmacology 48, 479–491 (2005).

    Article  CAS  Google Scholar 

  26. Nolte, C. et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72–86 (2001).

    Article  CAS  Google Scholar 

  27. Rothstein, J.D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  Google Scholar 

  28. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).

    Article  CAS  Google Scholar 

  29. Watanabe, T. et al. Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain Res. 845, 92–96 (1999).

    Article  CAS  Google Scholar 

  30. Greenwood, S.M. & Connolly, C.N. Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 53, 891–898 (2007).

    Article  CAS  Google Scholar 

  31. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  32. Hasbani, M.J., Schlief, M.L., Fisher, D.A. & Goldberg, M.P. Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J. Neurosci. 21, 2393–2403 (2001).

    Article  CAS  Google Scholar 

  33. Lu, Y.M. et al. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J. Neurosci. 17, 5196–5205 (1997).

    Article  CAS  Google Scholar 

  34. Mulholland, P.J. et al. Glutamate transporters regulate extrasynaptic NMDA receptor modulation of Kv2.1 potassium channels. J. Neurosci. 28, 8801–8809 (2008).

    Article  CAS  Google Scholar 

  35. Wadiche, J.I. & Jahr, C.E. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat. Neurosci. 8, 1329–1334 (2005).

    Article  CAS  Google Scholar 

  36. Nikkuni, O., Takayasu, Y., Iino, M., Tanaka, K. & Ozawa, S. Facilitated activation of metabotropic glutamate receptors in cerebellar Purkinje cells in glutamate transporter EAAT4-deficient mice. Neurosci. Res. 59, 296–303 (2007).

    Article  CAS  Google Scholar 

  37. Levenson, J. et al. Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat. Neurosci. 5, 155–161 (2002).

    Article  CAS  Google Scholar 

  38. Nishida, H. & Okabe, S. Direct astrocytic contacts regulate local maturation of dendritic spines. J. Neurosci. 27, 331–340 (2007).

    Article  CAS  Google Scholar 

  39. Nestor, M.W., Mok, L.P., Tulapurkar, M.E. & Thompson, S.M. Plasticity of neuron-glial interactions mediated by astrocytic EphARs. J. Neurosci. 27, 12817–12828 (2007).

    Article  CAS  Google Scholar 

  40. Diamond, J.S. & Jahr, C.E. Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. J. Neurophysiol. 83, 2835–2843 (2000).

    Article  CAS  Google Scholar 

  41. Lehre, K.P. & Rusakov, D.A. Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys. J. 83, 125–134 (2002).

    Article  CAS  Google Scholar 

  42. Morris, R.G. et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. Lond. B 358, 773–786 (2003).

    Article  CAS  Google Scholar 

  43. Tsuda, H. et al. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell 133, 963–977 (2008).

    Article  CAS  Google Scholar 

  44. Weiergraber, M. et al. Altered seizure susceptibility in mice lacking the Ca(v)2.3 E-type Ca2+ channel. Epilepsia 47, 839–850 (2006).

    Article  Google Scholar 

  45. Luscher, C., Malenka, R.C. & Nicoll, R.A. Monitoring glutamate release during LTP with glial transporter currents. Neuron 21, 435–441 (1998).

    Article  CAS  Google Scholar 

  46. Egea, J. et al. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47, 515–528 (2005).

    Article  CAS  Google Scholar 

  47. Haugeto, O. et al. Brain glutamate transporter proteins form homomultimers. J. Biol. Chem. 271, 27715–27722 (1996).

    Article  CAS  Google Scholar 

  48. Kramer, E.R. et al. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 5, e39 (2007).

    Article  Google Scholar 

  49. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  50. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bösl and the transgenic core facility for generating transgenic mice; E. Kandel (Columbia University) and F. Kirchhoff (Max Planck Institute of Experimental Medicine, Göttingen) for transgenic mice; M. Klein and O. Gökce for technical help; K. Deininger, C. Erlacher, V. Staiger, V. Stein and M. Traut for scientific input and suggestions; M. Korte, I. Kadow, V. Stein, J. Egea and R. Fonseca for critical comments on the manuscript. S.P. was supported by a postdoctoral fellowship from Fundação para a Ciência e Tecnologia of Portugal, co-funded by Programa Operacional Ciência e Inovação 2010 and Fundo Social Europeu. M.A.C. was supported by a fellowship from Fundación Española para la Ciencia y la Tecnología. This work was in part supported by grants from the European Union (Endotrack), the Deutsche Forschungsgemeinschaft (SPP1172) and the Max-Planck Society (all to R.K.), the Wellcome Trust and the Biotechnology and Biological Sciences Research Council, UK (R.S.), the German National Genome Research Network (NGF N grant 01GR0430) (T.K.), and US National Institutes of Health grant HD025938 (E.B.P.).

Author information

Authors and Affiliations

Authors

Contributions

A.F. designed, performed, analyzed most of the electrophysiology experiments and co-wrote the manuscript. S.P. designed, performed, analyzed the biochemical and quantitative anatomical studies and co-wrote the manuscript. S.D.H. and C.R.R. designed, performed and analyzed the astrocyte patch clamp recordings. M.A.C. and E.B.P. provided the Efna3−/− model, gave advice and aided in the interpretation of data. L.B., B.F. and T.K. performed and analyzed the induced seizure experiments. L.G. performed biochemical studies. Y.R. and R.S. provided the CA3-Cre mouse. K.K. provided Epha4lx/+ ES cells. R.K. supervised the project, designed experiments and co-wrote the manuscript. The two first authors, who contributed equally, are listed in alphabetical order.

Corresponding authors

Correspondence to Sónia Paixão or Rüdiger Klein.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filosa, A., Paixão, S., Honsek, S. et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12, 1285–1292 (2009). https://doi.org/10.1038/nn.2394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing