Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Yy1 as a molecular link between neuregulin and transcriptional modulation of peripheral myelination

Abstract

Fast axonal conduction depends on myelin, which is formed by Schwann cells in the PNS. We found that the transcription factor Yin Yang 1 (YY1) is crucial for peripheral myelination. Conditional ablation of Yy1 in the Schwann cell lineage resulted in severe hypomyelination, which occurred independently of altered Schwann cell proliferation or apoptosis. In Yy1 mutant mice, Schwann cells established a 1:1 relationship with axons but were unable to myelinate them. The Schwann cells expressed low levels of myelin proteins and of Egr2 (also called Krox20), which is an important regulator of peripheral myelination. In vitro, Schwann cells that lacked Yy1 did not upregulate Egr2 in response to neuregulin1 and did not express myelin protein zero. This phenotype was rescued by overexpression of Egr2. In addition, neuregulin-induced phosphorylation of YY1 was required for transcriptional activation of Egr2. Thus, YY1 emerges as an important activator of peripheral myelination that links neuregulin signaling with Egr2 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peripheral nerve hypomyelination in mice with conditional ablation of Yy1.
Figure 2: Ablation of Yy1 impairs the ability of Schwann cells to myelinate.
Figure 3: Effect of Yy1 ablation on the ability of Schwann cells to myelinate in vitro.
Figure 4: Ablation of Yy1 modulates Schwann cell S-phase entry during the second week of development.
Figure 5: YY1 regulates Egr2 expression.
Figure 6: YY1 regulates Egr2 expression in response to NRG1.
Figure 7: YY1 binds to chromatin at the Egr2 locus only in Schwann cells treated with NRG1.
Figure 8: The regulation of Egr2 by phosphorylated YY1 is mediated by NRG1-dependent MEK activation.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Jessen, K.R. & Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682 (2005).

    Article  CAS  Google Scholar 

  2. Michailov, G.V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    Article  CAS  Google Scholar 

  3. Nave, K.A. & Salzer, J.L. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492–500 (2006).

    Article  CAS  Google Scholar 

  4. Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005).

    Article  CAS  Google Scholar 

  5. Chan, R., Hardy, W.R., Dankort, D., Laing, M.A. & Muller, W.J. Modulation of Erbb2 signaling during development: a threshold level of Erbb2 signaling is required for development. Development 131, 5551–5560 (2004).

    Article  CAS  Google Scholar 

  6. Garratt, A.N., Voiculescu, O., Topilko, P., Charnay, P. & Birchmeier, C. A dual role of erbB2 in myelination and in expansion of the Schwann cell precursor pool. J. Cell Biol. 148, 1035–1046 (2000).

    Article  CAS  Google Scholar 

  7. Chen, S. et al. Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J. Neurosci. 26, 3079–3086 (2006).

    Article  CAS  Google Scholar 

  8. Jaegle, M. et al. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev. 17, 1380–1391 (2003).

    Article  CAS  Google Scholar 

  9. Jaegle, M. et al. The POU factor Oct-6 and Schwann cell differentiation. Science 273, 507–510 (1996).

    Article  CAS  Google Scholar 

  10. Topilko, P. et al. Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–799 (1994).

    Article  CAS  Google Scholar 

  11. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  Google Scholar 

  12. Friedrich, R.P., Schlierf, B., Tamm, E.R., Bosl, M.R. & Wegner, M. The class III POU domain protein Brn-1 can fully replace the related Oct-6 during schwann cell development and myelination. Mol. Cell. Biol. 25, 1821–1829 (2005).

    Article  CAS  Google Scholar 

  13. Ryu, E.J. et al. Misexpression of Pou3f1 results in peripheral nerve hypomyelination and axonal loss. J. Neurosci. 27, 11552–11559 (2007).

    Article  CAS  Google Scholar 

  14. Le, N. et al. Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc. Natl. Acad. Sci. USA 102, 2596–2601 (2005).

    Article  CAS  Google Scholar 

  15. Warner, L.E. et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat. Genet. 18, 382–384 (1998).

    Article  CAS  Google Scholar 

  16. Svaren, J. & Meijer, D. The molecular machinery of myelin gene transcription in Schwann cells. Glia 56, 1541–1551 (2008).

    Article  Google Scholar 

  17. Le, N. et al. Nab proteins are essential for peripheral nervous system myelination. Nat. Neurosci. 8, 932–940 (2005).

    Article  CAS  Google Scholar 

  18. Murphy, P. et al. The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development 122, 2847–2857 (1996).

    CAS  PubMed  Google Scholar 

  19. Kao, S.C. et al. Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science 323, 651–654 (2009).

    Article  CAS  Google Scholar 

  20. He, Y. et al. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55, 217–230 (2007).

    Article  CAS  Google Scholar 

  21. Zorick, T.S., Syroid, D.E., Arroyo, E., Scherer, S.S. & Lemke, G. The transcription factors SCIP and Krox-20 mark distinct stages and cell fates in Schwann cell differentiation. Mol. Cell. Neurosci. 8, 129–145 (1996).

    Article  CAS  Google Scholar 

  22. Päiväläinen, S. et al. Myelination in mouse dorsal root ganglion/Schwann cell cocultures. Mol. Cell. Neurosci. 37, 568–578 (2008).

    Article  Google Scholar 

  23. Doerflinger, N.H., Macklin, W.B. & Popko, B. Inducible site-specific recombination in myelinating cells. Genesis 35, 63–72 (2003).

    Article  CAS  Google Scholar 

  24. Zorick, T.S., Syroid, D.E., Brown, A., Gridley, T. & Lemke, G. Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development 126, 1397–1406 (1999).

    CAS  PubMed  Google Scholar 

  25. Parkinson, D.B. et al. Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J. Cell Biol. 164, 385–394 (2004).

    Article  CAS  Google Scholar 

  26. Parkinson, D.B. et al. Transforming growth factor beta (TGFbeta) mediates Schwann cell death in vitro and in vivo: examination of c-Jun activation, interactions with survival signals, and the relationship of TGFbeta-mediated death to Schwann cell differentiation. J. Neurosci. 21, 8572–8585 (2001).

    Article  CAS  Google Scholar 

  27. Mager, G.M. et al. Active gene repression by the Egr2.NAB complex during peripheral nerve myelination. J. Biol. Chem. 283, 18187–18197 (2008).

    Article  CAS  Google Scholar 

  28. Stewart, H.J. et al. Helix-loop-helix proteins in Schwann cells: a study of regulation and subcellular localization of Ids, REB and E12/47 during embryonic and postnatal development. J. Neurosci. Res. 50, 684–701 (1997).

    Article  Google Scholar 

  29. Woodhoo, A. et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat. Neurosci. 12, 839–847 (2009).

    Article  CAS  Google Scholar 

  30. Beausoleil, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  Google Scholar 

  31. Nousiainen, M., Sillje, H.H., Sauer, G., Nigg, E.A. & Korner, R. Phosphoproteome analysis of the human mitotic spindle. Proc. Natl. Acad. Sci. USA 103, 5391–5396 (2006).

    Article  CAS  Google Scholar 

  32. Zhou, F.F., Xue, Y., Chen, G.L. & Yao, X. GPS: a novel group-based phosphorylation predicting and scoring method. Biochem. Biophys. Res. Commun. 325, 1443–1448 (2004).

    Article  CAS  Google Scholar 

  33. Maurel, P. & Salzer, J.L. Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J. Neurosci. 20, 4635–4645 (2000).

    Article  CAS  Google Scholar 

  34. Harrisingh, M.C. et al. The Ras/Raf/ERK signaling pathway drives Schwann cell dedifferentiation. EMBO J. 23, 3061–3071 (2004).

    Article  CAS  Google Scholar 

  35. Meintanis, S., Thomaidou, D., Jessen, K.R., Mirsky, R. & Matsas, R. The neuron-glia signal beta-neuregulin promotes Schwann cell motility via the MAPK pathway. Glia 34, 39–51 (2001).

    Article  CAS  Google Scholar 

  36. Kim, H.A., DeClue, J.E. & Ratner, N. cAMP-dependent protein kinase A is required for Schwann cell growth: interactions between the cAMP and neuregulin/tyrosine kinase pathways. J. Neurosci. Res. 49, 236–247 (1997).

    Article  CAS  Google Scholar 

  37. Fragoso, G. et al. Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Exp. Neurol. 183, 34–46 (2003).

    Article  CAS  Google Scholar 

  38. Zanazzi, G. et al. Glial growth factor/neuregulin inhibits Schwann cell myelination and induces demyelination. J. Cell Biol. 152, 1289–1299 (2001).

    Article  CAS  Google Scholar 

  39. Haines, J.D., Fragoso, G., Hossain, S., Mushynski, W.E. & Almazan, G. p38 Mitogen-activated protein kinase regulates myelination. J. Mol. Neurosci. 35, 23–33 (2008).

    Article  CAS  Google Scholar 

  40. He, Y., Sandoval, J. & Casaccia-Bonnefil, P. Events at the transition between cell cycle exit and oligodendrocyte progenitor differentiation: the role of HDAC and YY1. Neuron Glia Biol. 3, 221–231 (2007).

    Article  Google Scholar 

  41. Becker, K.G., Jedlicka, P., Templeton, N.S., Liotta, L. & Ozato, K. Characterization of hUCRBP (YY1, NF-E1, delta): a transcription factor that binds the regulatory regions of many viral and cellular genes. Gene 150, 259–266 (1994).

    Article  CAS  Google Scholar 

  42. Kwon, H.J. & Chung, H.M. Yin Yang 1, a vertebrate polycomb group gene, regulates antero-posterior neural patterning. Biochem. Biophys. Res. Commun. 306, 1008–1013 (2003).

    Article  CAS  Google Scholar 

  43. Morgan, M.J., Woltering, J.M., In der Rieden, P.M., Durston, A.J. & Thiery, J.P. YY1 regulates the neural crest-associated slug gene in Xenopus laevis. J. Biol. Chem. 279, 46826–46834 (2004).

    Article  CAS  Google Scholar 

  44. Affar, B. et al. Essential dosage-dependent functions of the transcription factor yin yang 1 in late embryonic development and cell cycle progression. Mol. Cell. Biol. 26, 3565–3581 (2006).

    Article  Google Scholar 

  45. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003).

    Article  CAS  Google Scholar 

  46. Dupree, J.L., Coetzee, T., Blight, A., Suzuki, K. & Popko, B. Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. J. Neurosci. 18, 1642–1649 (1998).

    Article  CAS  Google Scholar 

  47. Marcus, J. et al. Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53, 372–381 (2006).

    Article  CAS  Google Scholar 

  48. Kim, J.Y. et al. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat. Neurosci. 13, 180–189 (2010).

    Article  Google Scholar 

  49. Liu, A. et al. The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. J. Neurosci. 27, 7339–7343 (2007).

    Article  CAS  Google Scholar 

  50. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Shi, K.A. Nave and B. Popko for mouse lines; G. Crabtree, D. Meijer and M. Grumet for plasmids and antibodies; H. Kim and P. Maurel for advice on Schwann cell and myelination cultures; C. Krier for assistance with microarrays; J. Salzer, K. Jessen, P. Brophy and C. Taveggia for discussions; and N. Kuo, J. Li and R. Srinivasan for technical assistance. This work was supported by grant numbers 5R01NS042925-08, R01NS052738-04 and NS04295-08S ARRA supplement and NMSS RG-4134 to P.C. and in part by the NJ Commission on Spinal Cord Research (08B-010-SCR3 to Y.H.). Electron microscopy was performed at the VCU Department of Anatomy and Neurobiology Microscopy Facility and supported, in part, by funding from a US National Institutes of Health Natinal Institute of Neurological Disorders and Stroke Center core grant (5P30NS047463-02).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. conducted the majority of the experiments and analyzed the data. J.Y.K. generated the YY1 point mutation plasmids and performed the immunoprecipitation and western blots. J.D. performed the ultrastructural analysis of the sciatic nerve. C.M.-V. and A.T. helped with the DRG co-culture experiments and conducted part of the in vitro myelination studies. J.S. performed the conservation analysis and contributed to the analysis of gene expression in the three mutants. P.C. supervised the project, analyzed the data, formatted the figures, uploaded microarray data and wrote the manuscript.

Corresponding author

Correspondence to Patrizia Casaccia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 1494 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Kim, J., Dupree, J. et al. Yy1 as a molecular link between neuregulin and transcriptional modulation of peripheral myelination. Nat Neurosci 13, 1472–1480 (2010). https://doi.org/10.1038/nn.2686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing