Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein

Abstract

Loss of FMR1 gene function results in fragile X syndrome, the most common heritable form of intellectual disability. The protein encoded by this locus (FMRP) is an RNA-binding protein that is thought to primarily act as a translational regulator; however, recent studies have implicated FMRP in other mechanisms of gene regulation. We found that the Drosophila fragile X homolog (dFMR1) biochemically interacted with the adenosine-to-inosine RNA-editing enzyme dADAR. Adar and Fmr1 mutant larvae exhibited distinct morphological neuromuscular junction (NMJ) defects. Epistasis experiments based on these phenotypic differences revealed that Adar acts downstream of Fmr1 and that dFMR1 modulates dADAR activity. Furthermore, sequence analyses revealed that a loss or overexpression of dFMR1 affects editing efficiency on certain dADAR targets with defined roles in synaptic transmission. These results link dFMR1 with the RNA-editing pathway and suggest that proper NMJ synaptic architecture requires modulation of dADAR activity by dFMR1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: dFMR1 biochemically interacts with dADAR in Drosophila S2 cell culture and in vivo.
Figure 2: Adar5G1 mutants exhibit NMJ defects in third instar larvae.
Figure 3: Neuronal expression of dADAR is sufficient for normal NMJ synaptic architecture.
Figure 4: Deaminase activity by dADAR is essential for normal NMJ synaptic architecture.
Figure 5: Adar and Fmr1 genetically interact.
Figure 6: Reduction of Adar dosage rescues the Fmr13 null NMJ defects in L3 larvae.
Figure 7: dFMR1 modifies dADAR function and affects A-to-I editing efficiency.

Similar content being viewed by others

References

  1. O'Donnell, W.T. & Warren, S.T. A decade of molecular studies of fragile X syndrome. Annu. Rev. Neurosci. 25, 315–338 (2002).

    Article  CAS  Google Scholar 

  2. Feng, Y. et al. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol. Cell 1, 109–118 (1997).

    Article  CAS  Google Scholar 

  3. Corbin, F. et al. The fragile X mental retardation protein is associated with poly(A)+ mRNA in actively translating polyribosomes. Hum. Mol. Genet. 6, 1465–1472 (1997).

    Article  CAS  Google Scholar 

  4. Khandjian, E.W., Corbin, F., Woerly, S. & Rousseau, F. The fragile X mental retardation protein is associated with ribosomes. Nat. Genet. 12, 91–93 (1996).

    Article  CAS  Google Scholar 

  5. Eberhart, D.E., Malter, H.E., Feng, Y. & Warren, S.T. The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum. Mol. Genet. 5, 1083–1091 (1996).

    Article  CAS  Google Scholar 

  6. Laggerbauer, B., Ostareck, D., Keidel, E.M., Ostareck-Lederer, A. & Fischer, U. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet. 10, 329–338 (2001).

    Article  CAS  Google Scholar 

  7. Li, Z. et al. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 29, 2276–2283 (2001).

    Article  CAS  Google Scholar 

  8. Monzo, K. et al. Fragile X mental retardation protein controls trailer hitch expression and cleavage furrow formation in Drosophila embryos. Proc. Natl. Acad. Sci. USA 103, 18160–18165 (2006).

    Article  CAS  Google Scholar 

  9. Bechara, E.G. et al. A novel function for fragile X mental retardation protein in translational activation. PLoS Biol. 7, e16 (2009).

    Article  Google Scholar 

  10. Weiler, I.J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl. Acad. Sci. USA 94, 5395–5400 (1997).

    Article  CAS  Google Scholar 

  11. Zalfa, F. et al. A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat. Neurosci. 10, 578–587 (2007).

    Article  CAS  Google Scholar 

  12. Dictenberg, J.B., Swanger, S.A., Antar, L.N., Singer, R.H. & Bassell, G.J. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev. Cell 14, 926–939 (2008).

    Article  CAS  Google Scholar 

  13. Estes, P.S., O'Shea, M., Clasen, S. & Zarnescu, D.C. Fragile X protein controls the efficacy of mRNA transport in Drosophila neurons. Mol. Cell. Neurosci. 39, 170–179 (2008).

    Article  CAS  Google Scholar 

  14. Antar, L.N., Dictenberg, J.B., Plociniak, M., Afroz, R. & Bassell, G.J. Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav. 4, 350–359 (2005).

    Article  CAS  Google Scholar 

  15. Pepper, A.S., Beerman, R.W., Bhogal, B. & Jongens, T.A. Argonaute2 suppresses Drosophila fragile X expression preventing neurogenesis and oogenesis defects. PLoS ONE 4, e7618 (2009).

    Article  Google Scholar 

  16. Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci. 7, 113–117 (2004).

    Article  CAS  Google Scholar 

  17. Ishizuka, A., Siomi, M.C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497–2508 (2002).

    Article  CAS  Google Scholar 

  18. Caudy, A.A., Myers, M., Hannon, G.J. & Hammond, S.M. Fragile X–related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496 (2002).

    Article  CAS  Google Scholar 

  19. Xu, X.L., Li, Y., Wang, F. & Gao, F.B. The steady-state level of the nervous system–specific microRNA-124a is regulated by dFMR1 in Drosophila. J. Neurosci. 28, 11883–11889 (2008).

    Article  CAS  Google Scholar 

  20. Edbauer, D. et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373–384 (2010).

    Article  CAS  Google Scholar 

  21. Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  Google Scholar 

  22. Palladino, M.J., Keegan, L.P., O'Connell, M.A. & Reenan, R.A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437–449 (2000).

    Article  CAS  Google Scholar 

  23. Tonkin, L.A. et al. RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J. 21, 6025–6035 (2002).

    Article  CAS  Google Scholar 

  24. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article  CAS  Google Scholar 

  25. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    Article  CAS  Google Scholar 

  26. Zhang, Y.Q. et al. Drosophila fragile X–related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107, 591–603 (2001).

    Article  CAS  Google Scholar 

  27. Veraksa, A., Bauer, A. & Artavanis-Tsakonas, S. Analyzing protein complexes in Drosophila with tandem affinity purification–mass spectrometry. Dev. Dyn. 232, 827–834 (2005).

    Article  CAS  Google Scholar 

  28. Tsai, A. & Carstens, R.P. An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat. Protoc. 1, 2820–2827 (2006).

    Article  CAS  Google Scholar 

  29. Palladino, M.J., Keegan, L.P., O'Connell, M.A. & Reenan, R.A. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6, 1004–1018 (2000).

    Article  CAS  Google Scholar 

  30. Jepson, J.E. et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J. Biol. Chem. 286, 8325–8337 (2011).

    Article  CAS  Google Scholar 

  31. Devys, D., Lutz, Y., Rouyer, N., Bellocq, J.P. & Mandel, J.L. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat. Genet. 4, 335–340 (1993).

    Article  CAS  Google Scholar 

  32. Feng, Y. et al. Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J. Neurosci. 17, 1539–1547 (1997).

    Article  CAS  Google Scholar 

  33. Tamanini, F. et al. Differential expression of FMR1, FXR1 and FXR2 proteins in human brain and testis. Hum. Mol. Genet. 6, 1315–1322 (1997).

    Article  CAS  Google Scholar 

  34. Hoopengardner, B., Bhalla, T., Staber, C. & Reenan, R. Nervous system targets of RNA editing identified by comparative genomics. Science 301, 832–836 (2003).

    Article  CAS  Google Scholar 

  35. Koh, Y.H., Gramates, L.S. & Budnik, V. Drosophila larval neuromuscular junction: molecular components and mechanisms underlying synaptic plasticity. Microsc. Res. Tech. 49, 14–25 (2000).

    Article  CAS  Google Scholar 

  36. Gatto, C.L. & Broadie, K. Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 135, 2637–2648 (2008).

    Article  CAS  Google Scholar 

  37. Keegan, L.P. et al. Tuning of RNA editing by ADAR is required in Drosophila. EMBO J. 24, 2183–2193 (2005).

    Article  CAS  Google Scholar 

  38. Gallo, A., Keegan, L.P., Ring, G.M. & O'Connell, M.A. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J. 22, 3421–3430 (2003).

    Article  CAS  Google Scholar 

  39. Banerjee, P. et al. Substitution of critical isoleucines in the KH domains of Drosophila fragile X protein results in partial loss-of-function phenotypes. Genetics 175, 1241–1250 (2007).

    Article  CAS  Google Scholar 

  40. Darnell, J.C. et al. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107, 489–499 (2001).

    Article  CAS  Google Scholar 

  41. Darnell, J.C. et al. Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev. 19, 903–918 (2005).

    Article  CAS  Google Scholar 

  42. Zang, J.B. et al. A mouse model of the human Fragile X syndrome I304N mutation. PLoS Genet. 5, e1000758 (2009).

    Article  Google Scholar 

  43. Wan, L., Dockendorff, T.C., Jongens, T.A. & Dreyfuss, G. Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol. Cell. Biol. 20, 8536–8547 (2000).

    Article  CAS  Google Scholar 

  44. Dickman, D.K., Lu, Z., Meinertzhagen, I.A. & Schwarz, T.L. Altered synaptic development and active zone spacing in endocytosis mutants. Curr. Biol. 16, 591–598 (2006).

    Article  CAS  Google Scholar 

  45. Aravamudan, B., Fergestad, T., Davis, W.S., Rodesch, C.K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965–971 (1999).

    Article  CAS  Google Scholar 

  46. Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).

    Article  CAS  Google Scholar 

  47. Dockendorff, T.C. et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34, 973–984 (2002).

    Article  CAS  Google Scholar 

  48. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).

    Article  CAS  Google Scholar 

  49. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  50. Zeng, F. et al. A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nat. Protoc. 1, 920–927 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank current and former members of the Jongens laboratory for helpful discussions and technical support, especially R. Beerman for preliminary studies with the LMB experiments, and S. Cruz and C. Dubowy. We also thank M. Sundaram and D. Hancks for critical reading of the manuscript. We are grateful to R. Carstens, G. Bashaw, T. Dockendorff, C. Hughes, K. Kaestner, S. Artavanis-Tsakonas, the Bloomington Stock Center and the Developmental Studies Hybridoma Bank for fly strains and reagents. We also thank C.-X. Yuan and The Perelman School of Medicine at the University of Pennsylvania Proteomics Facility for help with the mass spectrometry results. This work was supported by a Predoctoral Training grant in Genetics (5T32GM008216 to B.B.), a National Institute of Mental Health grant (MH086705 to T.A.J.), a National Institute of General Medical Science grant (GM086902 to T.A.J.) and an Ellison Medical Foundation Senior Scholar award to R.A.R.

Author information

Authors and Affiliations

Authors

Contributions

B.B. performed the experiments shown in Figures 1,2,3,4,5,6 and 7 and Supplementary Figures 2–5, generated the figures and wrote the manuscript. J.E.J. and Y.A.S. generated the Adar-HA4.5.2 and Adar-HA12.5.2 fly lines used in this study, performed experiments shown in Figure 7, helped generate the figure and contributed to the writing of this manuscript. J.E.J. also performed experiments for, and generated part of, Supplementary Figure 4. A.S.-R.P. performed the experiments shown in Supplementary Figure 1, generated the figure, identified the initial findings for this manuscript and contributed to the writing of this manuscript. R.A.R. and T.A.J. contributed to the conclusions drawn from all figures, provided intellectual input, contributed portions of the funding and contributed to the writing of this manuscript.

Corresponding author

Correspondence to Thomas A Jongens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 9572 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhogal, B., Jepson, J., Savva, Y. et al. Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 14, 1517–1524 (2011). https://doi.org/10.1038/nn.2950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing