Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of orbitofrontal dysfunction on cocaine addiction

Abstract

Cocaine addiction is characterized by poor judgment and maladaptive decision-making. Here we review evidence implicating the orbitofrontal cortex in such behavior. This evidence suggests that cocaine-induced changes in orbitofrontal cortex disrupt the representation of states and transition functions that form the basis of flexible and adaptive 'model-based' behavioral control. By impairing this function, cocaine exposure leads to an overemphasis on less flexible, maladaptive 'model-free' control systems. We propose that such an effect accounts for the complex pattern of maladaptive behaviors associated with cocaine addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of orbitofrontal cortex in changing conditioned responding as a result of reinforcer devaluation.
Figure 2: The role of orbitofrontal cortex in reversal learning.
Figure 3: Effect of cocaine on reversal learning.
Figure 4: Effect of cocaine on changes in conditioned responding as a result of reinforcer devaluation in rats.

Similar content being viewed by others

References

  1. Mendelson, J.H. & Mello, N.K. Management of cocaine abuse and dependence. N. Engl. J. Med. 334, 965–972 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Cardinal, R.N., Parkinson, J.A., Hall, G. & Everitt, B.J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).

    PubMed  Google Scholar 

  3. Daw, N.D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    CAS  PubMed  Google Scholar 

  4. Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P. & Dolan, R.J. Model-based influences on humans' choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thorpe, S.J., Rolls, E.T. & Maddison, S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49, 93–115 (1983).

    CAS  PubMed  Google Scholar 

  6. O'Doherty, J., Rolls, E.T., Francis, S., Bowtell, R. & McGlone, F. Representation of pleasant and aversive taste in the human brain. J. Neurophysiol. 85, 1315–1321 (2001).

    CAS  PubMed  Google Scholar 

  7. Liu, X. et al. Functional dissociation in frontal and striatal areas for processing of positive and negative reward information. J. Neurosci. 27, 4587–4597 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rolls, E.T. & Baylis, L.L. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J. Neurosci. 14, 5437–5452 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sul, J.H., Kim, H., Huh, N., Lee, D. & Jung, M.W. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66, 449–460 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wallis, J.D. & Miller, E.K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).

    PubMed  Google Scholar 

  11. Roesch, M.R. & Olson, C.R. Neuronal activity in primate orbitofrontal cortex reflects the value of time. J. Neurophysiol. 94, 2457–2471 (2005).

    PubMed  Google Scholar 

  12. O'Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102 (2001).

    CAS  PubMed  Google Scholar 

  13. Breiter, H.C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30, 619–639 (2001).

    CAS  PubMed  Google Scholar 

  14. Schoenbaum, G., Chiba, A.A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat. Neurosci. 1, 155–159 (1998).

    CAS  PubMed  Google Scholar 

  15. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    CAS  PubMed  Google Scholar 

  16. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hikosaka, K. & Watanabe, M. Long- and short-range reward expectancy in the primate orbitofrontal cortex. Eur. J. Neurosci. 19, 1046–1054 (2004).

    PubMed  Google Scholar 

  18. Critchley, H.D. & Rolls, E.T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1673–1686 (1996).

    CAS  PubMed  Google Scholar 

  19. O'Doherty, J. et al. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11, 399–403 (2000).

    CAS  PubMed  Google Scholar 

  20. Gottfried, J.A., O'Doherty, J. & Dolan, R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

    CAS  PubMed  Google Scholar 

  21. Gallagher, M., McMahan, R.W. & Schoenbaum, G. Orbitofrontal cortex and representation of incentive value in associative learning. J. Neurosci. 19, 6610–6614 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Izquierdo, A., Suda, R.K. & Murray, E.A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pickens, C.L. et al. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J. Neurosci. 23, 11078–11084 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ostlund, S.B. & Balleine, B.W. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J. Neurosci. 27, 4819–4825 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Burke, K.A., Franz, T.M., Miller, D.N. & Schoenbaum, G. Conditioned reinforcement can be mediated by either outcome-specific or general affective representations. Front. Integr. Neurosci 1, 2 (2007).

    PubMed  PubMed Central  Google Scholar 

  26. Pears, A., Parkinson, J.A., Hopewell, L., Everitt, B.J. & Roberts, A.C. Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates. J. Neurosci. 23, 11189–11201 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cousens, G.A. & Otto, T. Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex. Integr. Physiol. Behav. Sci. 38, 272–294 (2003).

    PubMed  Google Scholar 

  28. Mobini, S. et al. Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl.) 160, 290–298 (2002).

    CAS  Google Scholar 

  29. Winstanley, C.A., Theobald, D.E.H., Cardinal, R.N. & Robbins, T.W. Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J. Neurosci. 24, 4718–4722 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).

    CAS  PubMed  Google Scholar 

  31. Schoenbaum, G., Roesch, M.R., Stalnaker, T.A. & Takahashi, Y.K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10, 885–892 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kremer, E.F. Rescorla-Wagner model – losses in associative strength in compound conditioned stimuli. J. Exp. Psychol. Anim. Behav. Process. 4, 22–36 (1978).

    CAS  PubMed  Google Scholar 

  33. Takahashi, Y.K. et al. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62, 269–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burke, K.A., Takahashi, Y.K., Correll, J., Brown, P.L. & Schoenbaum, G. Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues. Eur. J. Neurosci. 30, 1941–1946 (2009).

    PubMed  PubMed Central  Google Scholar 

  35. McDannald, M.A., Lucantonio, F., Burke, K.A., Niv, Y. & Schoenbaum, G. Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning. J. Neurosci. 31, 2700–2705 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Walton, M.E., Behrens, T.E.J., Buckley, M.J., Rudebeck, P.H. & Rushworth, M.F.S. Separable learning systems in the macaque brain and the role of the orbitofrontal cortex in contingent learning. Neuron 65, 927–939 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Noonan, M.P. et al. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 107, 20547–20552 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsuchida, A., Doll, B.B. & Fellows, L.K. Beyond reversal: a critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback. J. Neurosci. 30, 16868–16875 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    CAS  PubMed  Google Scholar 

  40. Nestler, E.J. Common molecular and cellular substrates of addiction and memory. Neurobiol. Learn. Mem. 78, 637–647 (2002).

    CAS  PubMed  Google Scholar 

  41. Wolf, M.E., Sun, X., Mangiavacchi, S. & Chao, S.Z. Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47 (suppl. 1), 61–79 (2004).

    CAS  PubMed  Google Scholar 

  42. Kalivas, P.W. & O'Brien, C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33, 166–180 (2008).

    CAS  PubMed  Google Scholar 

  43. Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    CAS  PubMed  Google Scholar 

  44. Everitt, B.J. & Wolf, A.P. Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 3312–3320 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jentsch, J.D. & Taylor, J.R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl.) 146, 373–390 (1999).

    CAS  Google Scholar 

  46. Volkow, N.D. & Fowler, J.S. Addiction, a disease of compulsion and drive: involvement of orbitofrontal cortex. Cereb. Cortex 10, 318–325 (2000).

    CAS  PubMed  Google Scholar 

  47. Vanderschuren, L.J. & Everitt, B.J. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305, 1017–1019 (2004).

    CAS  PubMed  Google Scholar 

  48. Deroche-Gamonet, V., Belin, D. & Piazza, P.V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

    CAS  PubMed  Google Scholar 

  49. Shaham, Y. & Hope, B.T. The role of neuroadaptations in relapse to drug seeking. Nat. Neurosci. 8, 1437–1439 (2005).

    CAS  PubMed  Google Scholar 

  50. Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128 (2001).

    CAS  PubMed  Google Scholar 

  51. Im, H.I., Hollander, J.A., Bali, P. & Kenny, P.J. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 13, 1120–1127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu, L. et al. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat. Neurosci. 8, 212–219 (2005).

    CAS  PubMed  Google Scholar 

  53. Franklin, T.R. et al. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol. Psychiatry 51, 134–142 (2002).

    CAS  PubMed  Google Scholar 

  54. O'Neill, J., Cardenas, V.A. & Meyerhoff, D.J. Separate and interactive effects of cocaine and alcohol dependence on brain structures and metabolites: quantitative MRI and proton MR spectroscopic imaging. Addict. Biol. 6, 347–361 (2001).

    CAS  PubMed  Google Scholar 

  55. Ersche, K.D. et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134, 2013–2024 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Thompson, P.M. et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci. 24, 6028–6036 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Volkow, N.D., Valentine, A. & Kulkarni, M. Radiological and neurological changes in the drug abuse patient: a study with MRI. J. Neuroradiol. 15, 288–293 (1988).

    CAS  PubMed  Google Scholar 

  58. O'Neill, J., Cardenas, V.A. & Meyerhoff, D.J. Effects of abstinence on the brain: quantitative magnetic resonance imaging and magnetic resonance spectroscopic imaging in chronic alcohol abuse. Alcohol. Clin. Exp. Res. 25, 1673–1682 (2001).

    CAS  PubMed  Google Scholar 

  59. Lyoo, I.K. et al. White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects. Psychiatry Res. 131, 135–145 (2004).

    PubMed  Google Scholar 

  60. London, E.D. et al. Cocaine-induced reduction of glucose utilization in human brain. A study using positron emission tomography and [fluorine 18]-fluorodeoxyglucose. Arch. Gen. Psychiatry 47, 567–574 (1990).

    CAS  PubMed  Google Scholar 

  61. Volkow, N.D., Fowler, J.S., Wolf, A.P. & Gillespi, H. Metabolic studies of drugs of abuse. NIDA Res. Monogr. 105, 47–53 (1990).

    CAS  PubMed  Google Scholar 

  62. Volkow, N.D. et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am. J. Psychiatry 148, 621–626 (1991).

    CAS  PubMed  Google Scholar 

  63. Volkow, N.D. et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14, 169–177 (1993).

    CAS  PubMed  Google Scholar 

  64. Adinoff, B. et al. Limbic responsiveness to procaine in cocaine-addicted subjects. Am. J. Psychiatry 158, 390–398 (2001).

    CAS  PubMed  Google Scholar 

  65. Volkow, N.D. et al. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am. J. Psychiatry 158, 383–389 (2001).

    CAS  PubMed  Google Scholar 

  66. Kim, S.J. et al. Frontal glucose hypometabolism in abstinent methamphetamine users. Neuropsychopharmacology 30, 1383–1391 (2005).

    CAS  PubMed  Google Scholar 

  67. Volkow, N.D. et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am. J. Psychiatry 158, 2015–2021 (2001).

    CAS  PubMed  Google Scholar 

  68. Kolb, B., Pellis, S. & Robinson, T.E. Plasticity and functions of the orbital frontal cortex. Brain Cogn. 55, 104–115 (2004).

    PubMed  Google Scholar 

  69. Crombag, H.S., Gorny, G., Li, Y., Kolb, B. & Robinson, T.E. Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb. Cortex 15, 341–348 (2005).

    PubMed  Google Scholar 

  70. Winstanley, C.A. et al. DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. J. Neurosci. 27, 10497–10507 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jentsch, J.D., Olausson, P., De La Garza, R. & Taylor, J.R. Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology 26, 183–190 (2002).

    CAS  PubMed  Google Scholar 

  72. Porter, J.N. et al. Chronic cocaine self-administration in rhesus monkeys: impact on associative learning, cognitive control, and working memory. J. Neurosci. 31, 4926–4934 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schoenbaum, G., Saddoris, M.P., Ramus, S.J., Shaham, Y. & Setlow, B. Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur. J. Neurosci. 19, 1997–2002 (2004).

    PubMed  Google Scholar 

  74. Calu, D.J. et al. Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn. Mem. 14, 325–328 (2007).

    PubMed  Google Scholar 

  75. Krueger, D.D. et al. Prior chronic cocaine exposure in mice induces persistent alterations in cognitive function. Behav. Pharmacol. 20, 695–704 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Izquierdo, A. et al. Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology 35, 505–514 (2010).

    CAS  PubMed  Google Scholar 

  77. Fillmore, M.T. & Rush, C.R. Polydrug abusers display impaired discrimination-reversal learning in a model of behavioural control. J. Psychopharmacol. 20, 24–32 (2006).

    PubMed  Google Scholar 

  78. Ersche, K.D., Roiser, J.P., Robbins, T.W. & Sahakian, B.J. Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology (Berl.) 197, 421–431 (2008).

    CAS  Google Scholar 

  79. Bechara, A. et al. Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39, 376–389 (2001).

    CAS  PubMed  Google Scholar 

  80. Grant, S., Contoreggi, C. & London, E.D. Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia 38, 1180–1187 (2000).

    CAS  PubMed  Google Scholar 

  81. Nelson, A. & Killcross, S. Amphetamine exposure enhances habit formation. J. Neurosci. 26, 3805–3812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Voorn, P., Vanderschuren, L.J.M.J., Groenewegen, H.J., Robbins, T.W. & Pennartz, C.M.A. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 27, 468–474 (2004).

    CAS  PubMed  Google Scholar 

  83. Coffey, S.F., Gudleski, G.D., Saladin, M.E. & Brady, K.T. Impulsivity and rapid discounting of delayed hypothetical rewards in cocaine-dependent individuals. Exp. Clin. Psychopharmacol. 11, 18–25 (2003).

    PubMed  Google Scholar 

  84. Kirby, K.N. & Petry, N.M. Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99, 461–471 (2004).

    PubMed  Google Scholar 

  85. Heil, S.H., Johnson, M.W., Higgins, S.T. & Bickel, W.K. Delay discounting in currently using and currently abstinent cocaine-dependent outpatients and non-drug-using matched controls. Addict. Behav. 31, 1290–1294 (2006).

    PubMed  Google Scholar 

  86. Roesch, M.R., Takahashi, Y., Gugsa, N., Bissonette, G.B. & Schoenbaum, G. Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J. Neurosci. 27, 245–250 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Simon, N.W., Mendez, I.A. & Setlow, B. Cocaine exposure causes long-term increases in impulsive choice. Behav. Neurosci. 121, 543–549 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Homayoun, H. & Moghaddam, B. Progression of cellular adaptations in medial prefrontal and orbitofrontal cortex in response to repeated amphetamine. J. Neurosci. 26, 8025–8039 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stalnaker, T.A., Roesch, M.R., Franz, T.M., Burke, K.A. & Schoenbaum, G. Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. Eur. J. Neurosci. 24, 2643–2653 (2006).

    PubMed  PubMed Central  Google Scholar 

  90. Taylor, J.R. & Jentsch, J.D. Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, D-amphetamine and 3,4-methylenedioxymethamphetamine (“ecstasy”). Biol. Psychiatry 50, 137–143 (2001).

    CAS  PubMed  Google Scholar 

  91. Wyvell, C.L. & Berridge, K.C. Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J. Neurosci. 21, 7831–7840 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kantak, K.M. et al. Influence of cocaine self-administration on learning related to prefrontal cortex or hippocampus functioning in rats. Psychopharmacology (Berl.) 181, 227–236 (2005).

    CAS  Google Scholar 

  93. Fuchs, R.A., Evans, K.A., Parker, M.P. & See, R.E. Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. J. Neurosci. 24, 6600–6610 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lasseter, H.C., Ramirez, D.R., Xie, X. & Fuchs, R.A. Involvement of the lateral orbitofrontal cortex in drug context-induced reinstatement of cocaine-seeking behavior in rats. Eur. J. Neurosci. 30, 1370–1381 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Fellows, L.K. & Farah, M.J. Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126, 1830–1837 (2003).

    PubMed  Google Scholar 

  96. Schoenbaum, G. & Shaham, Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol. Psychiatry 63, 256–262 (2008).

    CAS  PubMed  Google Scholar 

  97. Schoenbaum, G. & Setlow, B. Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal-amygdalar function. Cereb. Cortex 15, 1162–1169 (2005).

    PubMed  Google Scholar 

  98. Everitt, B.J. et al. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Phil. Trans. R. Soc. Lond. B 363, 3125–3135 (2008).

    Google Scholar 

  99. Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat. Neurosci. 8, 1458–1463 (2005).

    CAS  PubMed  Google Scholar 

  100. Robbins, T.W. & Everitt, B.J. Drug addiction: bad habits add up. Nature 398, 567–570 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review is dedicated to the family of Jacob Peter Waletzky. The work of writing it was supported by funding from the intramural and extramural programs of the US National Institute on Drug Abuse, including time while G.S. and T.A.S. were employed at the University of Maryland, Baltimore. The opinions expressed in this article are the author's own and do not reflect the view of the US National Institutes of Health, the Department of Health and Human Services, or the United States government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Schoenbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note (PDF 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucantonio, F., Stalnaker, T., Shaham, Y. et al. The impact of orbitofrontal dysfunction on cocaine addiction. Nat Neurosci 15, 358–366 (2012). https://doi.org/10.1038/nn.3014

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing