Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing

Abstract

Cell type–specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent and inducible nature of our ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to our knowledge the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and expression characterization of the Ai27, Ai32, Ai35 and Ai39 Cre-reporter lines.
Figure 2: Photostimulation of pyramidal neurons in cortical slices of E-Ai27, E-Ai32 and Ai32 alone (−Cre) mice.
Figure 3: Effective silencing of cortical pyramidal neurons by Arch-ER2 in E-Ai35 and eNpHR3.0 in E-Ai39 mice.
Figure 4: Alternative light sources for silencing of cortical pyramidal neurons in E-Ai35 and E-Ai39 mice.
Figure 5: Effective silencing of induced population bursting in the hippocampal circuit in E-Ai35 mice.
Figure 6: Optical activation or silencing of pyramidal neuron activities in the neocortex of awake E-Ai27, E-Ai32, E-Ai35 and Camk2a-CreERT2;Ai39 (C-Ai39) mice.
Figure 7: In vivo identification of light-activated neurons in the hippocampus and thalamus of Pvalb-IRES-Cre;Ai32 mice.

References

  1. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  2. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  Google Scholar 

  3. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  4. Han, X. & Boyden, E.S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    Article  Google Scholar 

  5. Zhang, F., Aravanis, A.M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).

    Article  CAS  Google Scholar 

  6. Chow, B.Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  Google Scholar 

  7. Hegemann, P. & Moglich, A. Channelrhodopsin engineering and exploration of new optogenetic tools. Nat. Methods 8, 39–42 (2011).

    Article  CAS  Google Scholar 

  8. Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007).

    Article  CAS  Google Scholar 

  9. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  Google Scholar 

  10. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  CAS  Google Scholar 

  11. Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  Google Scholar 

  12. Kuhlman, S.J. & Huang, Z.J. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS ONE 3, e2005 (2008).

    Article  Google Scholar 

  13. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  Google Scholar 

  14. Wang, H. et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104, 8143–8148 (2007).

    Article  CAS  Google Scholar 

  15. Hägglund, M., Borgius, L., Dougherty, K.J. & Kiehn, O. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 13, 246–252 (2010).

    Article  Google Scholar 

  16. Chuhma, N., Tanaka, K.F., Hen, R. & Rayport, S. Functional connectome of the striatal medium spiny neuron. J. Neurosci. 31, 1183–1192 (2011).

    Article  CAS  Google Scholar 

  17. Ren, J. et al. Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69, 445–452 (2011).

    Article  CAS  Google Scholar 

  18. Tsunematsu, T. et al. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J. Neurosci. 31, 10529–10539 (2011).

    Article  CAS  Google Scholar 

  19. Zhao, S. et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).

    Article  CAS  Google Scholar 

  20. Kätzel, D., Zemelman, B.V., Buetfering, C., Wolfel, M. & Miesenbock, G. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat. Neurosci. 14, 100–107 (2011).

    Article  Google Scholar 

  21. Zhao, S. et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 36, 141–154 (2008).

    Article  CAS  Google Scholar 

  22. Gradinaru, V., Thompson, K.R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  Google Scholar 

  23. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  Google Scholar 

  24. Han, X. et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    Article  Google Scholar 

  25. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  Google Scholar 

  26. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

  27. Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  Google Scholar 

  28. Lewis, T.L. Jr., Mao, T. & Arnold, D.B. A role for myosin VI in the localization of axonal proteins. PLoS Biol. 9, e1001021 (2011).

    Article  CAS  Google Scholar 

  29. Peron, S. & Svoboda, K. From cudgel to scalpel: toward precise neural control with optogenetics. Nat. Methods 8, 30–34 (2011).

    Article  CAS  Google Scholar 

  30. Lewis, T.L. Jr., Mao, T., Svoboda, K. & Arnold, D.B. Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat. Neurosci. 12, 568–576 (2009).

    Article  CAS  Google Scholar 

  31. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  32. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    Article  CAS  Google Scholar 

  33. Ishizuka, N., Weber, J. & Amaral, D.G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990).

    Article  CAS  Google Scholar 

  34. Royer, S. et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31, 2279–2291 (2010).

    Article  Google Scholar 

  35. Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A. & Buzsáki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999).

    Article  CAS  Google Scholar 

  36. Halassa, M.M. et al. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat. Neurosci. 14, 1118–1120 (2011).

    Article  CAS  Google Scholar 

  37. Steriade, M., McCormick, D.A. & Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    Article  CAS  Google Scholar 

  38. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  Google Scholar 

  39. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

    Article  CAS  Google Scholar 

  40. Fujisawa, S., Amarasingham, A., Harrison, M.T. & Buzsaki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11, 823–833 (2008).

    Article  CAS  Google Scholar 

  41. Liu, X.B., Murray, K.D. & Jones, E.G. Low-threshold calcium channel subunit Cav 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J. Comp. Neurol. 519, 1181–1195 (2011).

    Article  CAS  Google Scholar 

  42. Tanahira, C. et al. Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice. Neurosci. Res. 63, 213–223 (2009).

    Article  CAS  Google Scholar 

  43. Lima, S.Q., Hromadka, T., Znamenskiy, P. & Zador, A.M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4, e6099 (2009).

    Article  Google Scholar 

  44. George, S.H. et al. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 4455–4460 (2007).

    Article  CAS  Google Scholar 

  45. Raymond, C.S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    Article  Google Scholar 

  46. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  Google Scholar 

  47. Shepherd, G.M., Pologruto, T.A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38, 277–289 (2003).

    Article  CAS  Google Scholar 

  48. Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H. & Buzsaki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the technical support of the Atlas Production Team, led by P. Wohnoutka, and the Technology Team, led by C. Dang, at the Allen Institute. We thank A. Nagy (Mount Sinai Hospital in Toronto) for providing the G4 ES cell line and K. Deisseroth (Stanford University) for providing the eNpHR3.0 construct. The authors wish to thank the Allen Institute founders, P.G. Allen and J. Allen, for their vision, encouragement and support. This work was funded by the Allen Institute for Brain Science and the Howard Hughes Medical Institute, US National Institutes of Health (NIH) grant DA028298 to H.Z., NIH grants MH90478 and MH093667 to E.E.T., NIH grant MH085944 and an Alfred P. Sloan Foundation grant to X.H., NIH grants NS034994 and MH54671 and a US National Science Foundation grant to G.B., and a Marie Curie Fellowship (EU FP7 PEOPLE 2009 IOF 254780) to A.B.

Author information

Authors and Affiliations

Authors

Contributions

L.M., J.K. and H.G. generated the Cre reporter mouse lines. T.M., B.M.H. and K.S. conducted the slice physiology study on Ai27 and Ai32 mice. H.K., Y.-W.A.H., A.J.G., S.Z., J.M.R. and E.E.T. conducted the slice physiology study on Ai35 and Ai39 mice. J.Z., X.G., Y.M. and X.H. conducted the in vivo cortical recordings. A.B., S.F. and G.B. conducted the in vivo hippocampal and thalamic recordings. A.R.J. provided institutional support. E.S.B. provided the Arch-ER2 construct. L.M., T.M., H.K., J.Z., A.B., S.F., E.S.B., G.B., X.H., E.E.T. and H.Z. analyzed data and wrote the paper.

Corresponding author

Correspondence to Hongkui Zeng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 7644 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madisen, L., Mao, T., Koch, H. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15, 793–802 (2012). https://doi.org/10.1038/nn.3078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing