Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs

Abstract

Temporal regulation of embryonic neurogenesis is controlled by hypostable transcription factors. The mechanism of the process is unclear. Here we show that the RNase III Drosha and DGCR8 (also known as Pasha), key components of the microRNA (miRNA) microprocessor, have important functions in mouse neurogenesis. Loss of microprocessor in forebrain neural progenitors resulted in a loss of stem cell character and precocious differentiation whereas Dicer deficiency did not. Drosha negatively regulated expression of the transcription factors Neurogenin 2 (Ngn2) and NeuroD1 whereas forced Ngn2 expression phenocopied the loss of Drosha. Neurog2 mRNA contains evolutionarily conserved hairpins with similarities to pri-miRNAs, and associates with the microprocessor in neural progenitors. We uncovered a Drosha-dependent destabilization of Neurog2 mRNAs consistent with microprocessor cleavage at hairpins. Our findings implicate direct and miRNA-independent destabilization of proneural mRNAs by the microprocessor, which facilitates neural stem cell (NSC) maintenance by blocking accumulation of differentiation and determination factors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microprocessor inactivation at E13.5 induces neural-progenitor differentiation and results in a distinct phenotype compared to Dicer1 cKO.
Figure 2: Drosha knockdown reduces S-phase labeling but does not induce cell-cycle exit.
Figure 3: Drosha regulates proneural mRNA levels.
Figure 4: Drosha knockdown induces Ngn2 protein expression and activation of neurogenesis.
Figure 5: Expression of Ngn2 phenocopies Drosha inhibition and microprocessor inactivation and induces NeuroDmCherry expression.
Figure 6: Drosha interacts and destabilizes hairpins within Neurog2 mRNA.

Similar content being viewed by others

References

  1. Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9–14 (2008).

    Article  CAS  Google Scholar 

  2. Filipowicz, W., Bhattacharyya, S.N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  3. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  4. Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).

    Article  CAS  Google Scholar 

  5. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    CAS  Google Scholar 

  6. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  Google Scholar 

  7. Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature 432, 231–235 (2004).

    CAS  Google Scholar 

  8. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  Google Scholar 

  9. Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M. & Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).

    Article  CAS  Google Scholar 

  10. Ruby, J.G., Jan, C.H. & Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    Article  CAS  Google Scholar 

  11. Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785 (2008).

    Article  CAS  Google Scholar 

  12. Yang, J.S. & Lai, E.C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903 (2011).

    Article  CAS  Google Scholar 

  13. Ender, C. et al. A human snoRNA with microRNA-like functions. Mol. Cell 32, 519–528 (2008).

    Article  CAS  Google Scholar 

  14. Cheloufi, S., Dos Santos, C.O., Chong, M.M. & Hannon, G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  Google Scholar 

  15. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  Google Scholar 

  16. Yang, J.S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168 (2010).

    Article  CAS  Google Scholar 

  17. De Pietri Tonelli, D. et al. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921 (2008).

    Article  CAS  Google Scholar 

  18. Babiarz, J.E. et al. A role for noncanonical microRNAs in the mammalian brain revealed by phenotypic differences in Dgcr8 versus Dicer1 knockouts and small RNA sequencing. RNA 17, 1489–1501 (2011).

    Article  CAS  Google Scholar 

  19. Georgi, S.A. & Reh, T.A. Dicer is required for the transition from early to late progenitor state in the developing mouse retina. J. Neurosci. 30, 4048–4061 (2010).

    Article  CAS  Google Scholar 

  20. Kaneko, H. et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325–330 (2011).

    Article  CAS  Google Scholar 

  21. Anthony, T.E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

    Article  CAS  Google Scholar 

  22. Gotz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  23. Kageyama, R., Niwa, Y., Shimojo, H., Kobayashi, T. & Ohtsuka, T. Ultradian oscillations in Notch signaling regulate dynamic biological events. Curr. Top. Dev. Biol. 92, 311–331 (2010).

    Article  CAS  Google Scholar 

  24. Gohlke, J.M. et al. Characterization of the proneural gene regulatory network during mouse telencephalon development. BMC Biol. 6, 15 (2008).

    Article  Google Scholar 

  25. Kageyama, R., Ohtsuka, T., Shimojo, H. & Imayoshi, I. Dynamic regulation of Notch signaling in neural progenitor cells. Curr. Opin. Cell Biol. 21, 733–740 (2009).

    Article  CAS  Google Scholar 

  26. Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl. Acad. Sci. USA 103, 1313–1318 (2006).

    Article  CAS  Google Scholar 

  27. Guillemot, F. Spatial and temporal specification of neural fates by transcription factor codes. Development 134, 3771–3780 (2007).

    Article  CAS  Google Scholar 

  28. Miyata, T., Kawaguchi, D., Kawaguchi, A. & Gotoh, Y. Mechanisms that regulate the number of neurons during mouse neocortical development. Curr. Opin. Neurobiol. 20, 22–28 (2010).

    Article  CAS  Google Scholar 

  29. Makeyev, E.V., Zhang, J., Carrasco, M.A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007).

    Article  CAS  Google Scholar 

  30. Lutolf, S., Radtke, F., Aguet, M., Suter, U. & Taylor, V. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 129, 373–385 (2002).

    CAS  PubMed  Google Scholar 

  31. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K. & Kageyama, R. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci. 30, 3489–3498 (2010).

    Article  CAS  Google Scholar 

  32. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009).

    Article  CAS  Google Scholar 

  33. Salomoni, P. & Calegari, F. Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol. 20, 233–243 (2010).

    Article  CAS  Google Scholar 

  34. Nguyen, L. et al. p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev. 20, 1511–1524 (2006).

    Article  CAS  Google Scholar 

  35. Cheung, T.H. et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482, 524–528 (2012).

    Article  CAS  Google Scholar 

  36. Wang, Y. & Blelloch, R. Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res. 69, 4093–4096 (2009).

    Article  CAS  Google Scholar 

  37. Gantier, M.P. et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 39, 5692–5703 (2011).

    Article  CAS  Google Scholar 

  38. Kawase-Koga,, Y. et al. RNaase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J. Cell Sci. 123, 586–594 (2010).

    Article  CAS  Google Scholar 

  39. Guillemot, F. Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr. Opin. Cell Biol. 17, 639–647 (2005).

    Article  CAS  Google Scholar 

  40. Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413 (2001).

    Article  CAS  Google Scholar 

  41. Ganesan, G. & Rao, S.M. A novel noncoding RNA processed by Drosha is restricted to nucleus in mouse. RNA 14, 1399–1410 (2008).

    Article  CAS  Google Scholar 

  42. Chong, M.M. et al. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 24, 1951–1960 (2010).

    Article  CAS  Google Scholar 

  43. Karginov, F.V. et al. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell 38, 781–788 (2010).

    Article  CAS  Google Scholar 

  44. Shenoy, A. & Blelloch, R. Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8. PLoS ONE 4, e6971 (2009).

    Article  Google Scholar 

  45. Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008).

    Article  CAS  Google Scholar 

  46. Heng, J.I. et al. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455, 114–118 (2008).

    Article  CAS  Google Scholar 

  47. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  48. Kadener, S. et al. Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. RNA 15, 537–545 (2009).

    Article  CAS  Google Scholar 

  49. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  50. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    Article  CAS  Google Scholar 

  51. Basak, O. & Taylor, V. Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur. J. Neurosci. 25, 1006–1022 (2007).

    Article  Google Scholar 

  52. Harfe, B.D., McManus, M.T., Mansfield, J.H., Hornstein, E. & Tabin, C.J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. USA 102, 10898–10903 (2005).

    Article  CAS  Google Scholar 

  53. Chong, M.M., Rasmussen, J.P., Rudensky, A.Y. & Littman, D.R. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205, 2005–2017 (2008).

    Article  CAS  Google Scholar 

  54. Stump, G. et al. Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech. Dev. 114, 153–159 (2002).

    Article  CAS  Google Scholar 

  55. Giachino, C., Basak, O. & Taylor, V. Isolation and manipulation of mammalian neural stem cells in vitro. Methods Mol. Biol. 482, 143–158 (2009).

    Article  CAS  Google Scholar 

  56. Nyfeler, Y. et al. Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J. 24, 3504–3515 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Kim (Seoul National University) for Drosha constructs, F. Guillemot (UK National Institute for Medical Research) for Neurog2 and shRNA constructs, and P. Herrare for beta2/NeuroD promoter, members of the Taylor laboratory for helpful discussions, and F. Sager for excellent technical assistance. P.K. and S.L. were PhD students of the International Max Planck Research School Molecular and Cellular Biology and of the Faculty of Biology, University of Freiburg, M.A.V. is a PhD student of the Department of Biomedical Science, University of Sheffield. This work was supported by the Deutsche Forschungsgemeinschaft (TA–310–1, TA–310–2 and SFB592 to V.T.).

Author information

Authors and Affiliations

Authors

Contributions

P.K. and M.A.V. performed the experiments, analyzed the data and wrote the paper, S.L. cloned the Hes5Cre construct and performed neurosphere assays, M.M. analyzed the miRNA array data, M.M.W.C. and D.R.L. provided the floxed Drosha mice, G.M.H. and S.A.W. helped with the CLIP analysis. V.T. designed the project, performed experiments, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Verdon Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–3 (PDF 8509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knuckles, P., Vogt, M., Lugert, S. et al. Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs. Nat Neurosci 15, 962–969 (2012). https://doi.org/10.1038/nn.3139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing