Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion

Abstract

Hippocampal NMDA receptors (NMDARs) and NMDAR-dependent synaptic plasticity are widely considered crucial substrates of long-term spatial memory, although their precise role remains uncertain. Here we show that Grin1ΔDGCA1 mice, lacking GluN1 and hence NMDARs in all dentate gyrus and dorsal CA1 principal cells, acquired the spatial reference memory water maze task as well as controls, despite impairments on the spatial reference memory radial maze task. When we ran a spatial discrimination water maze task using two visually identical beacons, Grin1ΔDGCA1 mice were impaired at using spatial information to inhibit selecting the decoy beacon, despite knowing the platform's actual spatial location. This failure could suffice to impair radial maze performance despite spatial memory itself being normal. Thus, these hippocampal NMDARs are not essential for encoding or storing long-term, associative spatial memories. Instead, we demonstrate an important function of the hippocampus in using spatial knowledge to select between alternative responses that arise from competing or overlapping memories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Removal of NMDARs in dentate gyrus and CA1.
Figure 2: Loss of functional NMDA receptors at CA3-to-CA1 synapses in the dorsal CA1 region.
Figure 3: Associative long-term spatial reference memory in the Morris water maze.
Figure 4: Associative long-term spatial reference memory on the radial maze task.
Figure 5: Preserved visual discrimination learning in Grin1ΔDGCA1 mice.
Figure 6: Spatial memory and choice performance on the spatial-discrimination beacon water maze task.
Figure 7: Normal performance of Grin1ΔDGCA1 mice on the visual-discrimination beacon water maze task.

Similar content being viewed by others

References

  1. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  2. Martin, S.J., Grimwood, P.D. & Morris, R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  3. Neves, G., Cooke, S.F. & Bliss, T.V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75 (2008).

    Article  CAS  Google Scholar 

  4. Morris, R.G., Anderson, E., Lynch, G.S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  Google Scholar 

  5. Bannerman, D.M., Good, M.A., Butcher, S.P., Ramsay, M. & Morris, R.G. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378, 182–186 (1995).

    Article  CAS  Google Scholar 

  6. Saucier, D. & Cain, D.P. Spatial learning without NMDA receptor-dependent long-term potentiation. Nature 378, 186–189 (1995).

    Article  CAS  Google Scholar 

  7. Tsien, J.Z., Huerta, P.T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  Google Scholar 

  8. Tsien, J.Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  Google Scholar 

  9. Wiltgen, B.J. et al. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. PLoS ONE 5, e12818 (2010).

    Article  Google Scholar 

  10. Hoeffer, C.A. et al. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior. Neuron 60, 832–845 (2008).

    Article  CAS  Google Scholar 

  11. Fukaya, M., Kato, A., Lovett, C., Tonegawa, S. & Watanabe, M. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc. Natl. Acad. Sci. USA 100, 4855–4860 (2003).

    Article  CAS  Google Scholar 

  12. Brigman, J.L. et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J. Neurosci. 30, 4590–4600 (2010).

    Article  CAS  Google Scholar 

  13. Rondi-Reig, L. et al. Impaired sequential egocentric and allocentric memories in forebrain-specific-NMDA receptor knock-out mice during a new task dissociating strategies of navigation. J. Neurosci. 26, 4071–4081 (2006).

    Article  CAS  Google Scholar 

  14. Niewoehner, B. et al. Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur. J. Neurosci. 25, 837–846 (2007).

    Article  CAS  Google Scholar 

  15. McHugh, T.J. et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–99 (2007).

    Article  CAS  Google Scholar 

  16. Murray, A.J. et al. Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat. Neurosci. 14, 297–299 (2011).

    Article  CAS  Google Scholar 

  17. Dillon, G.M., Qu, X., Marcus, J.N. & Dodart, J.C. Excitotoxic lesions restricted to the dorsal CA1 field of the hippocampus impair spatial memory and extinction learning in C57BL/6 mice. Neurobiol. Learn. Mem. 90, 426–433 (2008).

    Article  Google Scholar 

  18. Logue, S.F., Paylor, R. & Wehner, J.M. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav. Neurosci. 111, 104–113 (1997).

    Article  CAS  Google Scholar 

  19. Bannerman, D.M. et al. Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav. Neurosci. 113, 1170–1188 (1999).

    Article  CAS  Google Scholar 

  20. Moser, M.B., Moser, E.I., Forrest, E., Andersen, P. & Morris, R.G. Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. USA 92, 9697–9701 (1995).

    Article  CAS  Google Scholar 

  21. Pothuizen, H.H., Zhang, W.N., Jongen-Relo, A.L., Feldon, J. & Yee, B.K. Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur. J. Neurosci. 19, 705–712 (2004).

    Article  Google Scholar 

  22. von Engelhardt, J. et al. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 60, 846–860 (2008).

    Article  CAS  Google Scholar 

  23. Shimshek, D.R. et al. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors. PLoS Biol. 3, e354 (2005).

    Article  Google Scholar 

  24. Suchanek, B., Seeburg, P.H. & Sprengel, R. Tissue specific control regions of the N-methyl-D-aspartate receptor subunit NR2C promoter. Biol. Chem. 378, 929–934 (1997).

    CAS  PubMed  Google Scholar 

  25. Tashiro, A., Sandler, V.M., Toni, N., Zhao, C. & Gage, F.H. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442, 929–933 (2006).

    Article  CAS  Google Scholar 

  26. Lyon, L. et al. Fractionation of spatial memory in GRM2/3 (mGlu2/mGlu3) double knockout mice reveals a role for group II metabotropic glutamate receptors at the interface between arousal and cognition. Neuropsychopharmacology 36, 2616–2628 (2011).

    Article  CAS  Google Scholar 

  27. Morris, R.G., Hagan, J.J. & Rawlins, J.N. Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q. J. Exp. Psychol. B 38, 365–395 (1986).

    CAS  PubMed  Google Scholar 

  28. Uekita, T. & Okaichi, H. Pretraining does not ameliorate spatial learning deficits induced by intrahippocampal infusion of AP5. Behav. Neurosci. 123, 520–526 (2009).

    Article  CAS  Google Scholar 

  29. Brun, V.H. et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246 (2002).

    Article  CAS  Google Scholar 

  30. Steffenach, H.A., Witter, M., Moser, M.B. & Moser, E.I. Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45, 301–313 (2005).

    Article  CAS  Google Scholar 

  31. Morris, R.G., Schenk, F., Tweedie, F. & Jarrard, L.E. Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur. J. Neurosci. 2, 1016–1028 (1990).

    Article  Google Scholar 

  32. Morris, R.G., Davis, S. & Butcher, S.P. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Phil. Trans. R. Soc. Lond. B 329, 187–204 (1990).

    Article  CAS  Google Scholar 

  33. Vinogradova, O.S. Functional organization of the limbic system in the process of registration of information: facts and hypotheses. in The Hippocampus vol. 2 (eds. Isaacson, R.I. & Pribram, K.H.) 3–69 (Plenum, New York, 1975).

  34. Gray, J.A. & McNaughton, N. The Neuropsychology of Anxiety (Oxford Univ. Press, Oxford, 2000).

  35. Ploghaus, A. et al. Learning about pain: the neural substrate of the prediction error for aversive events. Proc. Natl. Acad. Sci. USA 97, 9281–9286 (2000).

    Article  CAS  Google Scholar 

  36. Kumaran, D. & Maguire, E.A. Match mismatch processes underlie human hippocampal responses to associative novelty. J. Neurosci. 27, 8517–8524 (2007).

    Article  CAS  Google Scholar 

  37. Kumaran, D. & Maguire, E.A. An unexpected sequence of events: mismatch detection in the human hippocampus. PLoS Biol. 4, e424 (2006).

    Article  Google Scholar 

  38. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).

  39. O'Keefe, J. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109 (1976).

    Article  CAS  Google Scholar 

  40. Fyhn, M., Molden, S., Hollup, S., Moser, M.B. & Moser, E. Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35, 555–566 (2002).

    Article  CAS  Google Scholar 

  41. Honey, R.C., Watt, A. & Good, M. Hippocampal lesions disrupt an associative mismatch process. J. Neurosci. 18, 2226–2230 (1998).

    Article  CAS  Google Scholar 

  42. Hollerman, J.R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–309 (1998).

    Article  CAS  Google Scholar 

  43. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    Article  CAS  Google Scholar 

  44. Rolls, E.T. & Treves, A. Neural Networks and Brain Function (Oxford Univ. Press, Oxford, 1998).

  45. Sahay, A., Wilson, D.A. & Hen, R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70, 582–588 (2011).

    Article  CAS  Google Scholar 

  46. Lee, G. & Saito, I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216, 55–65 (1998).

    Article  CAS  Google Scholar 

  47. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  48. Tang, W. et al. Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J. Neurosci. 29, 8621–8629 (2009).

    Article  CAS  Google Scholar 

  49. Jerecic, J. et al. Impaired NMDA receptor function in mouse olfactory bulb neurons by tetracycline-sensitive NR1 (N598R) expression. Brain Res. Mol. Brain Res. 94, 96–104 (2001).

    Article  CAS  Google Scholar 

  50. Krestel, H.E., Mayford, M., Seeburg, P.H. & Sprengel, R. A GFP-equipped bidirectional expression module well suited for monitoring tetracycline-regulated gene expression in mouse. Nucleic Acids Res. 29, E39 (2001).

    Article  CAS  Google Scholar 

  51. Jensen, V. et al. A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A. J. Physiol. (Lond.) 553, 843–856 (2003).

    Article  CAS  Google Scholar 

  52. Deacon, R.M., Bannerman, D.M., Kirby, B.P., Croucher, A. & Rawlins, J.N. Effects of cytotoxic hippocampal lesions in mice on a cognitive test battery. Behav. Brain Res. 133, 57–68 (2002).

    Article  Google Scholar 

  53. Reisel, D. et al. Spatial memory dissociations in mice lacking GluR1. Nat. Neurosci. 5, 868–873 (2002).

    Article  CAS  Google Scholar 

  54. Schmitt, W.B., Deacon, R.M., Seeburg, P.H., Rawlins, J.N. & Bannerman, D.M. A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. J. Neurosci. 23, 3953–3959 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Amtmann, H. Monyer and I. Bertocchi for in situ hybridization, and W. Tang and D. Arcos Diaz for recombinant adeno-associated virus injections. We thank R. Deacon for assistance with lesion surgeries. This work was supported by a grant from the European Commission to the EUSynapse project (LSHM-CT-2005-019055) to P.H.S., Wellcome Trust Senior Research Fellowships 074385 and 087736 to D.M.B., a grant from the German Research Foundation (SFB636/A4; BMFT:NGFN/SP10, DFG-GA 427/8-1) to R.S. and a grant from the Bauer-Stiftung to T.B. Ø.H. and V.J. were supported by the Letten Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and P.H.S. delineated the genetic concept. T.B., I.S. and R.S. generated and molecularly analyzed the Grin1ΔDGCA1 mice. Ø.H. and V.J. performed the electrophysiological analysis. D.M.B. designed the behavioral experiments. D.M.B., D.J.S. and A.T. performed behavioral analyses. D.M.B., T.B., R.S., J.N.P.R. and P.H.S. wrote the manuscript.

Corresponding authors

Correspondence to David M Bannerman or Peter H Seeburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 15765 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannerman, D., Bus, T., Taylor, A. et al. Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci 15, 1153–1159 (2012). https://doi.org/10.1038/nn.3166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing