Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct recordings of grid-like neuronal activity in human spatial navigation

Abstract

Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats and monkeys, are believed to support a wide range of spatial behaviors. Recording neuronal activity from neurosurgical patients performing a virtual-navigation task, we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Virtual navigation task.
Figure 2: Examples of grid-like spatial firing.
Figure 3: Population measurements of cells exhibiting significant grid-like spatial firing.

References

  1. O'Keefe, J. & Dostrovsky, J. Brain Res. 34, 171–175 (1971).

    Article  CAS  Google Scholar 

  2. Ekstrom, A.D. et al. Nature 425, 184–188 (2003).

    Article  CAS  Google Scholar 

  3. McHugh, T.J. et al. Cell 87, 1339–1349 (1996).

    Article  CAS  Google Scholar 

  4. Ulanovsky, N. & Moss, C. Nat. Neurosci. 10, 224–233 (2007).

    Article  CAS  Google Scholar 

  5. Muller, R.U. et al. J. Neurosci. 7, 1935–1950 (1987).

    Article  CAS  Google Scholar 

  6. Quirk, G.J. et al. J. Neurosci. 10, 2008–2017 (1990).

    Article  CAS  Google Scholar 

  7. Hafting, T. et al. Nature 436, 801–806 (2005).

    Article  CAS  Google Scholar 

  8. Yartsev, M.M. et al. Nature 479, 103–107 (2011).

    Article  CAS  Google Scholar 

  9. Killian, N.J. et al. Nature 491, 761–764 (2012).

    Article  CAS  Google Scholar 

  10. Sargolini, F. et al. Science 312, 758–762 (2006).

    Article  CAS  Google Scholar 

  11. Doeller, C.F., Barry, C. & Burgess, N. Nature 463, 657–661 (2010).

    Article  CAS  Google Scholar 

  12. Jacobs, J. & Kahana, M.J. Trends Cogn. Sci. 14, 162–171 (2010).

    Article  Google Scholar 

  13. Jacobs, J. et al. Proc. Natl. Acad. Sci. USA 107, 6487–6492 (2010).

    Article  CAS  Google Scholar 

  14. Bird, C.M. & Burgess, N. Nat. Rev. Neurosci. 9, 182–194 (2008).

    Article  CAS  Google Scholar 

  15. Rolls, E.T. Hippocampus 9, 467–480 (1999).

    Article  CAS  Google Scholar 

  16. Krupic, J., Burgess, N. & O'Keefe, J. Science 337, 853–857 (2012).

    Article  CAS  Google Scholar 

  17. Terrazas, A. et al. J. Neurosci. 25, 8085–8096 (2005).

    Article  CAS  Google Scholar 

  18. Buzsáki, G. & Moser, E. Nat. Neurosci. 16, 130–138 (2013).

    Article  Google Scholar 

  19. Hargreaves, E.L. et al. Science 308, 1792–1794 (2005).

    Article  CAS  Google Scholar 

  20. Tsao, A. et al. Curr. Biol. 23, 399–405 (2013).

    Article  CAS  Google Scholar 

  21. Quiroga, R.Q. et al. Neural Comput. 16, 1661–1687 (2004).

    Article  Google Scholar 

  22. Hill, D.N., Mehta, S. & Kleinfeld, D. J. Neurosci. 31, 8699–8705 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients for participating in our study. We thank K. Lee, D. Wyeth, E. Wyeth, D. Pourshaban, E. Behnke and T. Fields for technical assistance. This work was supported by US National Institutes of Health grants MH061975 and NS033221.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed by J.J., C.T.W., M.J.K., A.S. and I.F. Data were collected by J.J., C.T.W., J.F.M., J.F.B., I.F., M.R.S., A.D.S. and N.S. Data analyses were performed by J.J., X.-X.W., C.T.W., A.S. and M.J.K. J.J. and M.J.K. wrote the manuscript.

Corresponding authors

Correspondence to Joshua Jacobs, Itzhak Fried or Michael J Kahana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 2170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, J., Weidemann, C., Miller, J. et al. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 16, 1188–1190 (2013). https://doi.org/10.1038/nn.3466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing