Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission

Abstract

Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of GLT-1 surface diffusion.
Figure 2: GLT-1 diffusion is compartmentalized on the surface of astrocytes.
Figure 3: Effect of temperature on GLT-1 diffusion and sEPSC kinetics.
Figure 4: GLT-1 can be immobilized without any consequence on uptake or cell surface localization using X-link.
Figure 5: Surface diffusion of GLT-1 confers synaptic glutamate homeostasis on fast timescale.
Figure 6: X-link of endogenous GLT-1 in hippocampal slice preparation affects both astrocytic GLT-1 currents and neuronal sEPSCs.

Similar content being viewed by others

References

  1. Rothstein, J.D. et al. Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725 (1994).

    CAS  PubMed  Google Scholar 

  2. Riveros, N., Fiedler, J., Lagos, N., Munoz, C. & Orrego, F. Glutamate in rat brain cortex synaptic vesicles: influence of the vesicle isolation procedure. Brain Res. 386, 405–408 (1986).

    CAS  PubMed  Google Scholar 

  3. Clements, J.D., Lester, R.A., Tong, G., Jahr, C.E. & Westbrook, G.L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992).

    CAS  PubMed  Google Scholar 

  4. Bergles, D.E. & Jahr, C.E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci. 18, 7709–7716 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wadiche, J.I., Arriza, J.L., Amara, S.G. & Kavanaugh, M.P. Kinetics of a human glutamate transporter. Neuron 14, 1019–1027 (1995).

    CAS  PubMed  Google Scholar 

  6. Lehre, K.P. & Danbolt, N.C. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18, 8751–8757 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Diamond, J.S. & Jahr, C.E. Transporters buffer synaptically released glutamate on a submillisecond time scale. J. Neurosci. 17, 4672–4687 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Arriza, J.L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14, 5559–5569 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, Y.H. & Bergles, D.E. Glutamate transporters bring competition to the synapse. Curr. Opin. Neurobiol. 14, 346–352 (2004).

    CAS  PubMed  Google Scholar 

  10. Stenovec, M., Kreft, M., Grilc, S., Pangrsic, T. & Zorec, R. EAAT2 density at the astrocyte plasma membrane and Ca2+-regulated exocytosis. Mol. Membr. Biol. 25, 203–215 (2008).

    CAS  PubMed  Google Scholar 

  11. Foran, E., Rosenblum, L., Bogush, A., Pasinelli, P. & Trotti, D. Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 62, 1241–1253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. González, M.I. & Robinson, M.B. Neurotransmitter transporters: why dance with so many partners? Curr. Opin. Pharmacol. 4, 30–35 (2004).

    PubMed  Google Scholar 

  13. Kalandadze, A., Wu, Y. & Robinson, M.B. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486. J. Biol. Chem. 277, 45741–45750 (2002).

    CAS  PubMed  Google Scholar 

  14. Barbour, B., Keller, B.U., Llano, I. & Marty, A. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12, 1331–1343 (1994).

    CAS  PubMed  Google Scholar 

  15. Mennerick, S. & Zorumski, C.F. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368, 59–62 (1994).

    CAS  PubMed  Google Scholar 

  16. Tong, G. & Jahr, C.E. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13, 1195–1203 (1994).

    CAS  PubMed  Google Scholar 

  17. Asztely, F., Erdemli, G. & Kullmann, D.M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293 (1997).

    CAS  PubMed  Google Scholar 

  18. Diamond, J.S. & Jahr, C.E. Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. J. Neurophysiol. 83, 2835–2843 (2000).

    CAS  PubMed  Google Scholar 

  19. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Arizono, M. et al. Receptor-selective diffusion barrier enhances sensitivity of astrocytic processes to metabotropic glutamate receptor stimulation. Sci. Signal. 5, ra27 (2012).

    PubMed  Google Scholar 

  21. Toulme, E. & Khakh, B.S. Imaging P2X4 receptor lateral mobility in microglia: regulation by calcium and p38 MAPK. J. Biol. Chem. 287, 14734–14748 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Groc, L. & Choquet, D. Measurement and characteristics of neurotransmitter receptor surface trafficking (Review). Mol. Membr. Biol. 25, 344–352 (2008).

    CAS  PubMed  Google Scholar 

  23. Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat. Neurosci. 7, 695–696 (2004).

    CAS  PubMed  Google Scholar 

  24. Takeda, H., Inazu, M. & Matsumiya, T. Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn Schmiedebergs Arch. Pharmacol. 366, 620–623 (2002).

    CAS  Google Scholar 

  25. Yang, Y. et al. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61, 880–894 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Genoud, C. et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4, e343 (2006).

    PubMed  PubMed Central  Google Scholar 

  27. Benediktsson, A.M. et al. Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 60, 175–188 (2012).

    PubMed  Google Scholar 

  28. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Groc, L., Choquet, D. & Chaouloff, F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat. Neurosci. 11, 868–870 (2008).

    CAS  PubMed  Google Scholar 

  30. Dupuis, J.P. et al. Surface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses. EMBO J. 33, 842–861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Marcaggi, P., Billups, D. & Attwell, D. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J. Physiol. (Lond.) 552, 89–107 (2003).

    CAS  Google Scholar 

  32. Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    CAS  PubMed  Google Scholar 

  33. Tzingounis, A.V. & Wadiche, J.I. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat. Rev. Neurosci. 8, 935–947 (2007).

    CAS  PubMed  Google Scholar 

  34. Rothstein, J.D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    CAS  PubMed  Google Scholar 

  35. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    CAS  PubMed  Google Scholar 

  36. Oliet, S.H., Piet, R. & Poulain, D.A. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292, 923–926 (2001).

    CAS  PubMed  Google Scholar 

  37. Pannasch, U. et al. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat. Neurosci. 17, 549–558 (2014).

    CAS  PubMed  Google Scholar 

  38. Omrani, A. et al. Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses. J. Physiol. (Lond.) 587, 4575–4588 (2009).

    CAS  Google Scholar 

  39. Melone, M., Bellesi, M. & Conti, F. Synaptic localization of GLT-1a in the rat somatic sensory cortex. Glia 57, 108–117 (2009).

    PubMed  Google Scholar 

  40. Choquet, D. & Triller, A. The dynamic synapse. Neuron 80, 691–703 (2013).

    CAS  PubMed  Google Scholar 

  41. Overstreet, L.S., Kinney, G.A., Liu, Y.B., Billups, D. & Slater, N.T. Glutamate transporters contribute to the time course of synaptic transmission in cerebellar granule cells. J. Neurosci. 19, 9663–9673 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ventura, R. & Harris, K.M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kullmann, D.M., Erdemli, G. & Asztely, F. LTP of AMPA and NMDA receptor–mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17, 461–474 (1996).

    CAS  PubMed  Google Scholar 

  44. Krugers, H.J., Hoogenraad, C.C. & Groc, L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat. Rev. Neurosci. 11, 675–681 (2010).

    CAS  PubMed  Google Scholar 

  45. Mikasova, L. et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain 135, 1606–1621 (2012).

    PubMed  Google Scholar 

  46. Rothstein, J.D., Van Kammen, M., Levey, A.I., Martin, L.J. & Kuncl, R.W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84 (1995).

    CAS  PubMed  Google Scholar 

  47. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).

    CAS  PubMed  Google Scholar 

  48. Scimemi, A. et al. Amyloid-beta1–42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J. Neurosci. 33, 5312–5318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liévens, J.C. et al. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol. Dis. 8, 807–821 (2001).

    PubMed  Google Scholar 

  50. Massie, A. et al. Time-dependent changes in GLT-1 functioning in striatum of hemi-Parkinson rats. Neurochem. Int. 57, 572–578 (2010).

    CAS  PubMed  Google Scholar 

  51. Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat. Neurosci. 7, 695–696 (2004).

    CAS  PubMed  Google Scholar 

  52. Bard, L. et al. Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins. Proc. Natl. Acad. Sci. USA 107, 19561–19566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Peacey, E., Miller, C.C., Dunlop, J. & Rattray, M. The four major N- and C-terminal splice variants of the excitatory amino acid transporter GLT-1 form cell surface homomeric and heteromeric assemblies. Mol. Pharmacol. 75, 1062–1073 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Groc, L. et al. Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J. Neurosci. 27, 12433–12437 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bergles, D.E. & Jahr, C.E. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19, 1297–1308 (1997).

    CAS  PubMed  Google Scholar 

  56. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tong, G. & Jahr, C.E. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13, 1195–1203 (1994).

    CAS  PubMed  Google Scholar 

  58. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mennerick, S. & Zorumski, C.F. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368, 59–62 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Rattray (University of Bradford) for the generous gift of GLT-1flag construct, U. Gether (University of Copenhagen) for the generous gift of DATflag construct and M. Goillandeau (CNRS) who developed the software for the detection and analysis of synaptic events. We thank D. Bouchet (IINS CNRS), A. Ledantec (IINS CNRS) and N. Cassagno (INSERM) for cell cultures. We thank the Bordeaux Imaging Center, C. Poujol and D. Choquet for technical support. We thank our laboratory members for critical discussions. This work was supported by Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Conseil Régional d'Aquitaine, Agence National de la Recherche, Fondation de la Recherche Medicale, LABEX BRAIN ANR-10-LABX-43, Marie Curie ‘Edu-GLIA’ (PITN-GA-2009-237, an Initial Training Network) and Marie Curie ‘deepNMDAR’ fellowship funded by the European Commission under the Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Contributions

C.M.-R. carried out QD imaging, uncaging and immunostaining experiments and analysis. C.M.-R. and B.P. performed radiolabeled-glutamate uptake experiments and analysis. J.P.D. carried out electrophysiological experiments and analysis. J.A.V. and J.P.D. performed stereotaxic injections. A.P. recorded glutamate transporter currents. J.B. provided technical support. S.H.R.O. and L.G. directed the work. C.M.-R., J.P.D., L.G. and S.H.R.O. wrote the manuscript.

Corresponding authors

Correspondence to Laurent Groc or Stéphane H R Oliet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Surface diffusion of GLT-1 and DAT on astrocytes

(a) Schematic representation of GLT-1flag labelled by an anti-flag antibody/QD complex. (b) Plot indicating number of visible QD-tagged GLT-1 following acid wash at 10, 15, 20 and 30 min. Low number of QDs after wash indicates low endocytosis of transporter during this time as QDs visible after wash are those that have been internalized. (c) Representative images of GLT-1-tagged QDs before acid wash and after at 10 and 30 minute time points (scale bar 2 μm). (d) Schematic representation of the dopamine transporter (DAT) with an added N-terminal flag domain to allow surface quantum dot labelling. (e) Representative single trajectory of DATflag surface diffusion (scale bar 0.25 μm). (f) Instantaneous DAT and GLT-1diffusion coefficients. DATflag: median = 0.055 μm2/s; IQR ± 0.021-0.109 μm2/s, n=335 trajectories. GLT-1flag: median = 0.23 μm2/s; IQR ± 0.12-0.36 μm2/s; n=720 trajectories (*** P<0.001). (g) Mean square displacement versus time for DAT and GLT-1. Both curves exhibit negative curvature indicating confined behavior. Note the higher degree of confinement for DATflag.

Supplementary Figure 2 Comparison of endogenous GLT-1 properties to GLT-1flag

(a) Mean square displacement versus time for endogenous GLT-1endo and GLT-1flag. Both curves exhibit negative curvature indicating confined behavior. Note the higher degree of confinement for GLT-1endo. (b) Comparison of radio-labelled glutamate uptake in mixed hippocampal culture. In Na+-free and TBOA conditions transport is very low. Naïve cultures, without antibodies or transfected with GLT-1flag have high transport capacity which is not significantly different from GLT-1endo or GLT-1endo X-link conditions (n=8; P>0.05).

Supplementary Figure 3 No change in total levels of GLT-1 between GLT-1flag-transfected and non-transfected astrocytes in mixed hippocampal culture

(a) Example immunostaining image for GLT-1flag (i.e. transfected), total GLT-1 (using an antibody which recognizes both endogenous and transfected GLT-1) and the overlay of both images (scale bars = 40 μm). (b) No difference in total levels of GLT-1 expression was observed between astrocytes transfected with GLT-1flag and non-transfected astrocytes (non-transfected: 100 ± 23.9%, n=13 astrocytes; transfected: 136 ± 18.7%, n=13 astrocytes; P=0.127; n.s.).

Supplementary Figure 4 Graphic summary

In control condition (left) GLT-1 is highly mobile on the surface of astrocytes with access to the confined membrane opposing the synaptic cleft. However, when GLT-1 surface diffusion is reduced (due to decreased temperature or X-link; right) transporters are no longer permitted to diffuse from synaptic to extrasynaptic areas, which results in a reduced glutamate uptake capacity of GLT-1, evidenced by increased sEPSC kinetics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 1367 kb)

Supplementary Methods Checklist (PDF 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy-Royal, C., Dupuis, J., Varela, J. et al. Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat Neurosci 18, 219–226 (2015). https://doi.org/10.1038/nn.3901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing