Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium dynamics in astrocyte processes during neurovascular coupling

Abstract

Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca2+) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca2+ signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca2+ sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca2+ increases in astrocyte processes but not in somata. These Ca2+ increases systematically precede the onset of functional hyperemia by 1–2 s, reestablishing astrocytes as potential regulators of neurovascular coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatic Ca2+ signals mediated by group 1 mGluRs in astrocytes and juxtaglomerular neurons of Aldh1l1-eGFP mice.
Figure 2: Synaptic activation of Ca2+ signals in glomerular astrocyte somata.
Figure 3: TBOA lowers the threshold for astrocyte responses but changes the basal state of the glomerular network.
Figure 4: Activation of Ca2+ signals in astrocytes by OSN stimulation requires post-synaptic activation of JG neurons and is differently modulated by group1 mGluRs.
Figure 5: GCaMP3 expression in glomerular layer astrocytes of adult Cx30-CreERT2; R26-lsl-GCaMP3 mice.
Figure 6: Effects of ATP and mGluR5 agonists on glomerular astrocytes from adult Cx30-CreERT2; R26-lsl-GCaMP3 mice.
Figure 7: Astrocyte processes in Cx30-CreERT2; R26-lsl-GCaMP3 mice reliably and rapidly respond to odor stimulation well before the onset of functional hyperemia.
Figure 8: Astrocyte processes respond well before the onset of functional hyperemia.

Similar content being viewed by others

References

  1. Iadecola, C. & Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10, 1369–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Attwell, D., Buchan, A. & Charpak, S. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunn, K.M. & Nelson, M.T. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am. J. Physiol. Heart Circ. Physiol. 306, H1–H14 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Peppiatt, C.M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bell, R.D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hall, C.N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Masamoto, K. & Kanno, I. Anesthesia and the quantitative evaluation of neurovascular coupling. J. Cereb. Blood Flow Metab. 32, 1233–1247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Schummers, J., Yu, H. & Sur, M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320, 1638–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Schulz, K. et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods 9, 597–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Nizar, K. et al. In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J. Neurosci. 33, 8411–8422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mulligan, S.J. & MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Panatier, A. et al. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146, 785–798 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Di Castro, M.A. et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 14, 1276–1284 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Shigetomi, E. & Kracun, S. A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat. Neurosci. 13, 759–766 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shigetomi, E. et al. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J. Gen. Physiol. 141, 633–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Volterra, A., Liaudet, N. & Savtchouk, I. Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15, 327–335 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Haustein, M.D. et al. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron 82, 413–429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rusakov, D.A.a, Bard, L., Stewart, M.G. & Henneberger, C. Diversity of astroglial functions alludes to subcellular specialisation. Trends Neurosci. 37, 228–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Paukert, M. et al. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82, 1263–1270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calcinaghi, N. et al. Metabotropic glutamate receptor mGluR5 is not involved in the early hemodynamic response. J. Cereb. Blood Flow Metab. 31, e1–e10 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, W. et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science (80-.). 339, 197–200 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  23. Jego, P., Pacheco-Torres, J., Araque, A. & Canals, S. Functional MRI in mice lacking IP3-dependent calcium signaling in astrocytes. J. Cereb. Blood Flow Metab. 34, 1599–1603 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fiacco, T.A. et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54, 611–626 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Gurden, H., Uchida, N. & Mainen, Z.F. Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake. Neuron 52, 335–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Petzold, G.C., Albeanu, D.F., Sato, T.F. & Murthy, V.N. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58, 897–910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaigneau, E. et al. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J. Neurosci. 27, 6452–6460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shepherd, G.M., Chen, W.R. & Greer, C.A. in The Synaptic Organization of the Brain (ed. Shepherd, G.M.) 165–216 (Oxford University Press, 2004).

  29. Dong, H.-W., Hayar, A. & Ennis, M. Activation of group I metabotropic glutamate receptors on main olfactory bulb granule cells and periglomerular cells enhances synaptic inhibition of mitral cells. J. Neurosci. 27, 5654–5663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jian, K., Cifelli, P., Pignatelli, A., Frigato, E. & Belluzzi, O. Metabotropic glutamate receptors 1 and 5 differentially regulate bulbar dopaminergic cell function. Brain Res. 1354, 47–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Kosaka, T. & Kosaka, K. “Interneurons” in the olfactory bulb revisited. Neurosci. Res. 69, 93–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kunzelmann, P. et al. Late onset and increasing expression of the gap junction protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25, 111–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, Y. et al. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59, 200–207 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jabaudon, D. et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc. Natl. Acad. Sci. USA 96, 8733–8738 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van den Pol, A.N. Presynaptic metabotropic glutamate receptors in adult and developing neurons: autoexcitation in the olfactory bulb. J. Comp. Neurol. 359, 253–271 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Slezak, M. et al. Transgenic mice for conditional gene manipulation in astroglial cells. Glia 55, 1565–1576 (2007).

    Article  PubMed  Google Scholar 

  37. Bonfanti, L. & Peretto, P. Radial glial origin of the adult neural stem cells in the subventricular zone. Prog. Neurobiol. 83, 24–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Oheim, M. et al. New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. Biochim. Biophys. Acta 1843, 2284–2306 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Roux, L., Benchenane, K., Rothstein, J.D., Bonvento, G. & Giaume, C. Plasticity of astroglial networks in olfactory glomeruli. Proc. Natl. Acad. Sci. USA 108, 18442–18446 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lecoq, J., Tiret, P. & Charpak, S. Peripheral adaptation codes for high odor concentration in glomeruli. J. Neurosci. 29, 3067–3072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reeves, A.M.B., Shigetomi, E. & Khakh, B.S. Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps. J. Neurosci. 31, 9353–9358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winship, I.R., Plaa, N. & Murphy, T.H. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J. Neurosci. 27, 6268–6272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lind, B.L., Brazhe, R., Jessen, S.B., Tan, F.C.C. & Lauritzen, M.J. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc. Natl. Acad. Sci. USA 110, E4678–E4687 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winpenny, E. et al. Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells. Neural Dev. 6, 12 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nissant, A. & Pallotto, M. Integration and maturation of newborn neurons in the adult olfactory bulb–from synapses to function. Eur. J. Neurosci. 33, 1069–1077 (2011).

    Article  PubMed  Google Scholar 

  46. Hartfuss, E., Galli, R., Heins, N. & Götz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Takata, N. et al. Cerebral blood flow modulation by basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes. PLoS ONE 8, e66525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bonder, D.E. & McCarthy, K.D. Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J. Neurosci. 34, 13139–13150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jukovskaya, N., Tiret, P., Lecoq, J. & Charpak, S. What does local functional hyperemia tell about local neuronal activation? J. Neurosci. 31, 1579–1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Pouzat for his critical comments. Support was provided by INSERM, the Agence Nationale de la Recherche (Project Angioneurins R11036KK), the Leducq Foundation, the Human Frontier Science Program Organization (RGP008912009-C), the Fondation pour la Recherche Médicale (equipe FRM) and the US National Institutes of Health (MH084020 to D.E.B.). K.C. was supported by the Agence Nationale de la Recherche and the ERC Advanced Grant “Imaging-in-the-magnet.” D.G.L. was supported by a doctoral fellowship from École des Neurosciences de Paris (Paris School of Neuroscience) and a bursary from the Fondation pour la Recherche Médicale (FDT20130928252). The team of S.C. is part of the École des Neurosciences de Paris Ile-de-France network. We thank W. Fröstle (Ciba-Geigy) for the kind gift of CGP55845A (3-[1-(S)-(3,4-dichlorophenyl)ethyl]amino-2(S)hydroxypropyl-P-benzyl-phosphonic acid).

Author information

Authors and Affiliations

Authors

Contributions

Y.O., K.C. and D.G.L. conducted the experiments, M.C. synthesized CaRuby-Nano, Y.O., K.C. and S.C. analyzed the data, Y.O., K.C., S.C. and J.-M.M. designed the research, A.A. and D.E.B. provided the R26-lsl-GCaMP3 mouse line, and F.W.P. provided the Cx30-CreERT2 mouse line. All authors edited the paper.

Corresponding author

Correspondence to Serge Charpak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Amplitude and onset of astrocytic Ca2+ increases are dependent on stimulus duration.

(a) Ca2+ responses to trains of OSN stimuli (0.5, 1 or 2 s) in 2 astrocytes (a1-2) and 2 neurons (n1-2). The shaded area indicates stimulus duration (each pulse 800 µA, 100 µs). (b-c) Summary bar graphs (n = 9 cells, 4 mice) showing amplitude and latency of OSN-induced Ca2+ transients in astrocytes induced with 20 Hz stimulus trains of various durations (700 - 800 µA, 100 µs). Lines connect data from individual cells (open circles).

Supplementary Figure 2 Proposed schema summarizing results of slice recordings from juvenile mice as shown in Figures 1–4.

Black arrows: Electrical stimulation of OSNs (Stim) releases glutamate from OSN terminals, which activate glomerular dendrites via AMPAR, NMDAR, and mGluRs (the presence of particular mGluRs on neurons is dependent on the cell subtype), triggering dendritic release of glutamate, which in turn causes calcium increases in astrocyte somata via the action of mGluR5. Grey arrows: the puff application of t-ACPD directly activates mGluRs on both neurons and astrocytes.

Supplementary Figure 3 The expression of GCaMP3 in GLAST-CreERT2; R26-lsl-GCaMP3 mice is not specific for astrocytes in the adult olfactory bulb.

Horizontal sections of olfactory bulb from 3 month old uninjected (n = 2 mice, without the injection of 4-OHT) mice labeled for neurons (NeuN, left), the expression of GCaMP3 under the control of the GLAST promoter (GFP, left middle), and the astrocytic marker S100β (right middle). (a) In the EPL, GCaMP3-expressing granule cells and astrocytes (star) are visible. The dendrites of granule cells end at the base of JG neurons. Inset: spines are clearly visible on granule cell dendrites (scale bar 5 µm). Granule cells expressing GCaMP3 express the neuronal marker NeuN (arrowheads). (b) Astrocytes are present throughout the olfactory bulb, in the ONL where they enwrap blood vessels (star), and in the GL and EPL. Note the differing morphology of astrocytes in these three layers. (c) JG neurons (arrowhead) also express GCaMP3. In the lower half of this image, spiny granule cell dendrites can be seen extending into the bottom of the GL. ONL: olfactory nerve layer; GL: glomerular layer; EPL: external plexiform layer; MC/GCL: mitral cell/granule cell layer. Scale bar 50 µm. All images are standard deviation projections of confocal image stacks.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsu, Y., Couchman, K., Lyons, D. et al. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci 18, 210–218 (2015). https://doi.org/10.1038/nn.3906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing