Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Finding translation in stress research

Abstract

In our ongoing efforts to advance understanding of human diseases, translational research across rodents and humans on stress-related mental disorders stands out as a field that is producing discoveries that illuminate mechanisms of risk and pathophysiology at a brisk rate. Here we offer a Perspective on how a productive translational research dialog between preclinical models and clinical studies of these disorders is being powered by an ever-developing appreciation of the shared neural circuits and genetic architecture that moderate the response to stress across species. Working from these deep foundations, we discuss the approaches, both traditional and innovative, that have the potential to deliver a new generation of risk biomarkers and therapeutic strategies for stress-related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A brief timeline of some major milestones—past, present and future—related to the observation, classification and scientific study of stress and stress-related disorders.

Marina Corral Spence/Nature Publishing Group

Figure 2: Preexisting variability in a highly conserved neural circuitry mediating stress responsiveness predicts vulnerability for stress-related dysfunction.

Marina Corral Spence/Nature Publishing Group

Figure 3

Similar content being viewed by others

References

  1. Roozendaal, B., McEwen, B.S. & Chattarji, S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 10, 423–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders edn. 5 (APA Press, Washington, DC, 2013).

  3. Kessler, R.C. et al. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol. Psychiatr. Soc. 18, 23–33 (2009).

    Article  Google Scholar 

  4. Selye, H. A syndrome produced by diverse nocuous agents. Nature 138, 32 (1936).

    Article  Google Scholar 

  5. Szabo, S., Tache, Y. & Somogyi, A. The legacy of Hans Selye and the origins of stress research: a retrospective 75 years after his landmark brief “letter” to the editor of Nature. Stress 15, 472–478 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. McEwen, B.S. Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin. Neurosci. 8, 367–381 (2006).

    PubMed  PubMed Central  Google Scholar 

  7. de Kloet, E.R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Tovote, P., Fadok, J.P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Maren, S. & Holmes, A. Stress and fear extinction. Neuropsychopharmacology doi:10.1038/npp.2015.180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maren, S. & Quirk, G.J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Janak, P.H. & Tye, K.M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knigge, K.M. Adrenocortical response to stress in rats with lesions in hippocampus and amygdala. Proc. Soc. Exp. Biol. Med. 108, 18–21 (1961).

    Article  CAS  PubMed  Google Scholar 

  13. Gray, T.S., Carney, M.E. & Magnuson, D.J. Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 50, 433–446 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Blanchard, D.C. & Blanchard, R.J. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psychol. 81, 281–290 (1972).

    Article  CAS  PubMed  Google Scholar 

  15. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Pape, H.C. & Pare, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 90, 419–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Bouton, M.E. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol. Psychiatry 52, 976–986 (2002).

    Article  PubMed  Google Scholar 

  18. Fanselow, M.S. & Poulos, A.M. The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56, 207–234 (2005).

    Article  PubMed  Google Scholar 

  19. Herman, J.P., Ostrander, M.M., Mueller, N.K. & Figueiredo, H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1201–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Frankland, P.W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Milad, M.R. & Quirk, G.J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu. Rev. Psychol. 63, 129–151 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fitzgerald, P.J. et al. Durable fear memories require PSD-95. Mol. Psychiatry 20, 901–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Goshen, I. et al. Dynamics of retrieval strategies for remote memories. Cell 147, 678–689 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Do-Monte, F.H., Quinones-Laracuente, K. & Quirk, G.J. A temporal shift in the circuits mediating retrieval of fear memory. Nature 519, 460–463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singewald, N., Schmuckermair, C., Whittle, N., Holmes, A. & Ressler, K.J. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol. Ther. 149, 150–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Cryan, J.F. & Holmes, A. The ascent of mouse: advances in modelling human depression and anxiety. Nat. Rev. Drug Discov. 4, 775–790 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. LaBar, K.S., LeDoux, J.E., Spencer, D.D. & Phelps, E.A. Impaired fear conditioning following unilateral temporal lobectomy in humans. J. Neurosci. 15, 6846–6855 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furmark, T., Fischer, H., Wik, G., Larsson, M. & Fredrikson, M. The amygdala and individual differences in human fear conditioning. Neuroreport 8, 3957–3960 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Bremner, J.D. et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol. Med. 35, 791–806 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pitman, R.K. et al. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 13, 769–787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Milad, M.R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 66, 1075–1082 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Likhtik, E. & Paz, R. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci. 38, 158–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alvarez, R.P., Biggs, A., Chen, G., Pine, D.S. & Grillon, C. Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J. Neurosci. 28, 6211–6219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delgado, M.R., Nearing, K.I., Ledoux, J.E. & Phelps, E.A. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59, 829–838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. VanElzakker, M.B., Kathryn Dahlgren, M., Caroline Davis, F., Dubois, S. & Shin, L.M. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and in anxiety disorders. Neurobiol. Learn. Mem. 113, 3–18 (2014).

    Article  PubMed  Google Scholar 

  36. Linnman, C., Zeffiro, T.A., Pitman, R.K. & Milad, M.R. An fMRI study of unconditioned responses in post-traumatic stress disorder. Biol. Mood Anxiety Disord. 1, 8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Whittle, N., Hauschild, M., Lubec, G., Holmes, A. & Singewald, N. Rescue of impaired fear extinction and normalization of cortico-amygdala circuit dysfunction in a genetic mouse model by dietary zinc restriction. J. Neurosci. 30, 13586–13596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andero, R. & Ressler, K.J. Fear extinction and BDNF: translating animal models of PTSD to the clinic. Genes Brain Behav. 11, 503–512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Casey, B.J. et al. Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience 164, 108–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Holmes, A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci. Biobehav. Rev. 32, 1293–1314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caspi, A., Hariri, A.R., Holmes, A., Uher, R. & Moffitt, T.E. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am. J. Psychiatry 167, 509–527 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Holmes, A., Murphy, D.L. & Crawley, J.N. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol. Psychiatry 54, 953–959 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kalueff, A.V., Olivier, J.D., Nonkes, L.J. & Homberg, J.R. Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci. Biobehav. Rev. 34, 373–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Hariri, A.R. & Holmes, A. Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn. Sci. 10, 182–191 (2006).

    Article  PubMed  Google Scholar 

  45. Neumeister, A. et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol. Psychiatry 18, 1034–1040 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirvonen, J. et al. Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography. Mol. Psychiatry 18, 916–921 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Hill, M.N. et al. Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 38, 2952–2961 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Gaetani, S., Cuomo, V. & Piomelli, D. Anandamide hydrolysis: a new target for anti-anxiety drugs? Trends Mol. Med. 9, 474–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Dincheva, I. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat. Comm. 6, 6395 (2015).

    Article  CAS  Google Scholar 

  50. Hariri, A.R. et al. Divergent effects of genetic variation in endocannabinoid signaling on human threat- and reward-related brain function. Biol. Psychiatry 66, 9–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Gunduz-Cinar, O. et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol. Psychiatry 18, 813–823 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Gunduz-Cinar, O., Hill, M.N., McEwen, B.S. & Holmes, A. Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol. Sci. 34, 637–644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Binder, E.B. et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. J. Am. Med. Assoc. 299, 1291–1305 (2008).

    Article  CAS  Google Scholar 

  54. White, M.G. et al. FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes Brain Behav. 11, 869–878 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Zannas, A.S. & Binder, E.B. Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms and pleiotropism. Genes Brain Behav. 13, 25–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Admon, R., Milad, M.R. & Hendler, T. A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities. Trends Cogn. Sci. 17, 337–347 (2013).

    Article  PubMed  Google Scholar 

  57. McLaughlin, K.A. et al. Amygdala response to negative stimuli predicts PTSD symptom onset following a terrorist attack. Depress. Anxiety 31, 834–842 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Swartz, J.R., Knodt, A.R., Radtke, S.R. & Hariri, A.R. A neural biomarker of psychological vulnerability to future life stress. Neuron 85, 505–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, R.J. et al. Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning. Neuropsychopharmacology 33, 2595–2604 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Morey, R.A. et al. Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch. Gen. Psychiatry 69, 1169–1178 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Griebel, G. & Holmes, A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat. Rev. Drug Discov. 12, 667–687 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Monfils, M.H., Cowansage, K.K., Klann, E. & LeDoux, J.E. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324, 951–955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schiller, D. et al. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463, 49–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Agren, T. et al. Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science 337, 1550–1552 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Marin, M.F., Camprodon, J.A., Dougherty, D.D. & Milad, M.R. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond. Depress. Anxiety 31, 269–278 (2014).

    Article  PubMed  Google Scholar 

  66. Osuch, E.A. et al. Repetitive TMS combined with exposure therapy for PTSD: a preliminary study. J. Anxiety Disord. 23, 54–59 (2009).

    Article  PubMed  Google Scholar 

  67. Brunoni, A.R. et al. The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry 70, 383–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Holtzheimer, P.E. & Mayberg, H.S. Deep brain stimulation for psychiatric disorders. Annu. Rev. Neurosci. 34, 289–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lozano, A.M. et al. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J. Neurosurg. 116, 315–322 (2012).

    Article  PubMed  Google Scholar 

  70. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.R.H. is supported by Duke University and by US National Institutes of Health grants R01DA033369 and R01AG049789. A.H. is supported by the National Institute on Alcohol Abuse and Alcoholism Intramural Research Program, the Henry Jackson Foundation for the Advancement of Military Medicine, and the Department of Defense in the Center for Neuroscience and Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad R Hariri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariri, A., Holmes, A. Finding translation in stress research. Nat Neurosci 18, 1347–1352 (2015). https://doi.org/10.1038/nn.4111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing