Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetically encoded indicators of neuronal activity

Abstract

Experimental efforts to understand how the brain represents, stores and processes information require high-fidelity recordings of multiple different forms of neural activity within functional circuits. Thus, creating improved technologies for large-scale recordings of neural activity in the live brain is a crucial goal in neuroscience. Over the past two decades, the combination of optical microscopy and genetically encoded fluorescent indicators has become a widespread means of recording neural activity in nonmammalian and mammalian nervous systems, transforming brain research in the process. In this review, we describe and assess different classes of fluorescent protein indicators of neural activity. We first discuss general considerations in optical imaging and then present salient characteristics of representative indicators. Our focus is on how indicator characteristics relate to their use in living animals and on likely areas of future progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetically encoded pH indicators (GEPIs).
Figure 2: Genetically encoded transmitter indicators (GETIs).
Figure 3: Genetically encoded voltage indicators (GEVIs).
Figure 4: Genetically encoded calcium indicators (GECIs).

Similar content being viewed by others

References

  1. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kavalali, E.T. & Jorgensen, E.M. Visualizing presynaptic function. Nat. Neurosci. 17, 10–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Knöpfel, T., Gallero-Salas, Y. & Song, C. Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr. Opin. Chem. Biol. 27, 75–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Hamel, E.J., Grewe, B.F., Parker, J.G. & Schnitzer, M.J. Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86, 140–159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Osakada, F. et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71, 617–631 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. Elife 5, e12727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peters, A.J., Chen, S.X. & Komiyama, T. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510, 263–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Lecoq, J. et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat. Neurosci. 17, 1825–1829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sofroniew, N.J., Flickinger, D., King, J . & Svoboda, K . A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. Elife 5, e14472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stirman, J.N., Smith, I.T ., Kudenov, M.W. & Smith, S.L. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol. http://dx.doi.org/10.1038/nbt.3594 (2016).

  14. Tomer, R. et al. SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796–1806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L. & Tank, D.W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Jercog, P., Rogerson, T. & Schnitzer, M.J. Large-scale fluorescence calcium-imaging methods for studies of long-term memory in behaving mammals. Cold Spring Harb. Perspect. Biol. 8, a021824 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, H.H. et al. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 166, 245–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheffield, M.E. & Dombeck, D.A. Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517, 200–204 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Betley, J.N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghosh, K.K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilt, B.A., Fitzgerald, J.E. & Schnitzer, M.J. Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing. Biophys. J. 104, 51–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akemann, W. et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 108, 2323–2337 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Broussard, G.J., Liang, R. & Tian, L. Monitoring activity in neural circuits with genetically encoded indicators. Front. Mol. Neurosci. 7, 97 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Südhof, T.C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  PubMed  Google Scholar 

  30. Sankaranarayanan, S., De Angelis, D., Rothman, J.E. & Ryan, T.A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199–2208 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, Y., Rosendale, M., Campbell, R.E. & Perrais, D. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J. Cell Biol. 207, 419–432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mutch, S.A. et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J. Neurosci. 31, 1461–1470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alabi, A.A. & Tsien, R.W. Synaptic vesicle pools and dynamics. Cold Spring Harb. Perspect. Biol. 4, a013680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sjulson, L. & Miesenböck, G. Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory. Physiology (Bethesda) 22, 47–55 (2007).

    CAS  Google Scholar 

  35. Leitz, J. & Kavalali, E.T. Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. Elife 3, e03658 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Tabares, L. et al. Monitoring synaptic function at the neuromuscular junction of a mouse expressing synaptopHluorin. J. Neurosci. 27, 5422–5430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bozza, T., McGann, J.P., Mombaerts, P. & Wachowiak, M. In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42, 9–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Gandasi, N.R. et al. Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis. PLoS One 10, e0127801 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Diamond, J.S. Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J. Neurosci. 25, 2906–2916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. von Gersdorff, H., Sakaba, T., Berglund, K. & Tachibana, M. Submillisecond kinetics of glutamate release from a sensory synapse. Neuron 21, 1177–1188 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Liang, R., Broussard, G.J. & Tian, L. Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem. Neurosci. 6, 84–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Okumoto, S. et al. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl. Acad. Sci. USA 102, 8740–8745 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dulla, C. et al. Imaging of glutamate in brain slices using FRET sensors. J. Neurosci. Methods 168, 306–319 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Baird, G.S., Zacharias, D.A. & Tsien, R.Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA 96, 11241–11246 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marvin, J.S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hikima, T., Garcia-Munoz, M. & Arbuthnott, G.W. Presynaptic D1 heteroreceptors and mGlu autoreceptors act at individual cortical release sites to modify glutamate release. Brain Res. 1639, 74–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Xie, Y. et al. Resolution of high-frequency mesoscale intracortical maps using the genetically encoded glutamate sensor iGluSnFR. J. Neurosci. 36, 1261–1272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berntsson, R.P., Smits, S.H., Schmitt, L., Slotboom, D.J. & Poolman, B. A structural classification of substrate-binding proteins. FEBS Lett. 584, 2606–2617 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Sabatini, B.L. & Regehr, W.G. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Stuart, G.J. & Spruston, N. Dendritic integration: 60 years of progress. Nat. Neurosci. 18, 1713–1721 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Bean, B.P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Peterka, D.S., Takahashi, H. & Yuste, R. Imaging voltage in neurons. Neuron 69, 9–21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. St-Pierre, F., Chavarha, M. & Lin, M.Z. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. Curr. Opin. Chem. Biol. 27, 31–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Siegel, M.S. & Isacoff, E.Y. A genetically encoded optical probe of membrane voltage. Neuron 19, 735–741 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Baker, B.J. et al. Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J. Neurosci. Methods 161, 32–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Dimitrov, D. et al. Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One 2, e440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abdelfattah, A.S. et al. A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices. J. Neurosci. 36, 2458–2472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jung, A., Garcia, J.E., Kim, E., Yoon, B.J. & Baker, B.J. Linker length and fusion site composition improve the optical signal of genetically encoded fluorescent voltage sensors. Neurophotonics 2, 021012 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kolodner, P., Lukashev, E.P., Ching, Y.C. & Rousseau, D.L. Electric-field-induced Schiff-base deprotonation in D85N mutant bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 93, 11618–11621 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kralj, J.M., Douglass, A.D., Hochbaum, D.R., Maclaurin, D. & Cohen, A.E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2012).

    Article  CAS  Google Scholar 

  63. Flytzanis, N.C. et al. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun. 5, 4894 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Gong, Y., Li, J.Z. & Schnitzer, M.J. Enhanced archaerhodopsin fluorescent protein voltage indicators. PLoS One 8, e66959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hochbaum, D.R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bayraktar, H. et al. Ultrasensitive measurements of microbial rhodopsin photocycles using photochromic FRET. Photochem. Photobiol. 88, 90–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Gong, Y., Wagner, M.J., Zhong Li, J. & Schnitzer, M.J. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat. Commun. 5, 3674 (2014).

    Article  PubMed  Google Scholar 

  68. Zou, P. et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun. 5, 4625 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Tsutsui, H. et al. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase. J. Physiol. (Lond.) 591, 4427–4437 (2013).

    Article  CAS  Google Scholar 

  70. Akemann, W. et al. Two-photon voltage imaging using a genetically encoded voltage indicator. Sci. Rep. 3, 2231 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cao, G. et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell 154, 904–913 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, T.W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brinks, D., Klein, A.J. & Cohen, A.E. Two-photon lifetime imaging of voltage indicating proteins as a probe of absolute membrane voltage. Biophys. J. 109, 914–921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Higley, M.J. & Sabatini, B.L. Calcium signaling in dendritic spines. Cold Spring Harb. Perspect. Biol. 4, a005686 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Helmchen, F., Borst, J.G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koester, H.J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. (Lond.) 529, 625–646 (2000).

    Article  CAS  Google Scholar 

  77. Gore, B.B., Soden, M.E. & Zweifel, L.S. Visualization of plasticity in fear-evoked calcium signals in midbrain dopamine neurons. Learn. Mem. 21, 575–579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W. & Helmchen, F. Inference of neuronal network spike dynamics and topology from calcium imaging data. Front. Neural Circuits 7, 201 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pnevmatikakis, E.A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Theis, L. et al. Benchmarking spike rate inference in population calcium imaging. Neuron 90, 471–482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miyawaki, A. & Niino, Y. Molecular spies for bioimaging—fluorescent protein-based probes. Mol. Cell 58, 632–643 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Thestrup, T. et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Hires, S.A., Tian, L. & Looger, L.L. Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol. 36, 69–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  85. Hendel, T. et al. Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J. Neurosci. 28, 7399–7411 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wallace, D.J. et al. Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat. Methods 5, 797–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Yamada, Y. et al. Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells. Front. Cell. Neurosci. 5, 18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nagai, T., Sawano, A., Park, E.S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Q., Shui, B., Kotlikoff, M.I. & Sondermann, H. Structural basis for calcium sensing by GCaMP2. Structure 16, 1817–1827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Badura, A., Sun, X.R., Giovannucci, A., Lynch, L.A. & Wang, S.S. Fast calcium sensor proteins for monitoring neural activity. Neurophotonics 1, 025008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Podor, B. et al. Comparison of genetically encoded calcium indicators for monitoring action potentials in mammalian brain by two-photon excitation fluorescence microscopy. Neurophotonics 2, 021014 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Helassa, N. et al. Fast-response calmodulin-based fluorescent indicators reveal rapid intracellular calcium dynamics. Sci. Rep. 5, 15978 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Ahrens, M.B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dunn, T.W. et al. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. Elife 5, e12741 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nguyen, J.P. et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 113, E1074–E1081 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Venkatachalam, V. et al. Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 113, E1082–E1088 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Lovett-Barron, M. et al. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Siegel, F. & Lohmann, C. Probing synaptic function in dendrites with calcium imaging. Exp. Neurol. 242, 27–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Cichon, J. & Gan, W.B. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature 520, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun, W., Tan, Z., Mensh, B.D. & Ji, N. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 308–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Melom, J.E., Akbergenova, Y., Gavornik, J.P. & Littleton, J.T. Spontaneous and evoked release are independently regulated at individual active zones. J. Neurosci. 33, 17253–17263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao, Y. et al. An expanded palette of genetically encoded Ca2 indicators. Science 333, 1888–1891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Inoue, M. et al. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat. Methods 12, 64–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Berlin, S. et al. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat. Methods 12, 852–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Matsuda, T., Horikawa, K., Saito, K. & Nagai, T. Highlighted Ca2 imaging with a genetically encoded 'caged' indicator. Sci. Rep. 3, 1398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hoi, H., Matsuda, T., Nagai, T. & Campbell, R.E. Highlightable Ca2+ indicators for live cell imaging. J. Am. Chem. Soc. 135, 46–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Ai, M. et al. Green-to-red photoconversion of GCaMP. PLoS One 10, e0138127 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sattarzadeh, A., Saberianfar, R., Zipfel, W.R., Menassa, R. & Hanson, M.R. Green to red photoconversion of GFP for protein tracking in vivo. Sci. Rep. 5, 11771 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fosque, B.F. et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Chu, J. et al. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat. Biotechnol. 34, 760–767 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun, X.R. et al. Fast GCaMPs for improved tracking of neuronal activity. Nat. Commun. 4, 2170 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, X.X., Pan, M. & Lin, M.Z. Investigating neuronal function with optically controllable proteins. Front. Mol. Neurosci. 8, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jagadish, S., Barnea, G., Clandinin, T.R. & Axel, R. Identifying functional connections of the inner photoreceptors in Drosophila using Tango-Trace. Neuron 83, 630–644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kawashima, T., Okuno, H. & Bito, H. A new era for functional labeling of neurons: activity-dependent promoters have come of age. Front. Neural Circuits 8, 37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Seo, J., Choe, M. & Kim, S.Y. Clearing and labeling techniques for large-scale biological tissues. Mol. Cells 39, 439–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Susaki, E.A. & Ueda, H.R. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23, 137–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Grosenick, L., Marshel, J.H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jorgenson, L.A. et al. The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Phil. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140164 (2015).

    Article  Google Scholar 

  123. Piao, H.H., Rajakumar, D., Kang, B.E., Kim, E.H. & Baker, B.J. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential. J. Neurosci. 35, 372–385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, Y. & Tsien, R.W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15, 1047–1053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, H. et al. Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front. Mol. Neurosci. 4, 34 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hires, S.A., Zhu, Y. & Tsien, R.Y. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc. Natl. Acad. Sci. USA 105, 4411–4416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Lam, A.J. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9, 1005–1012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lundby, A., Akemann, W. & Knöpfel, T. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur. Biophys. J. 39, 1625–1635 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Mishina, Y., Mutoh, H. & Knöpfel, T. Transfer of Kv3.1 voltage sensor features to the isolated Ci-VSP voltage-sensing domain. Biophys. J. 103, 669–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jin, L. et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75, 779–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cranfill, P.J. et al. Quantitative assessment of fluorescent proteins. Nat. Methods 13, 557–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567–574 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Lütcke, H. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 4, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  138. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 101, 10554–10559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, J.L., Carta, S., Soldado-Magraner, J., Schneider, B.L. & Helmchen, F. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature 499, 336–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Horikawa, K. et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat. Methods 7, 729–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Palmer, A.E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mues, M. et al. Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat. Med. 19, 778–783 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge research funding from the Defense Advanced Research Projects Agency (M.J.S. and M.Z.L.), the Rita Allen Foundation (M.Z.L.) and NIH BRAIN Initiative grant 1U01NS090600 (M.Z.L. and M.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Z Lin or Mark J Schnitzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Schnitzer, M. Genetically encoded indicators of neuronal activity. Nat Neurosci 19, 1142–1153 (2016). https://doi.org/10.1038/nn.4359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing