Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational subunits in thin dendrites of pyramidal cells

Abstract

The thin basal and oblique dendrites of cortical pyramidal neurons receive most of the synaptic inputs from other cells, but their integrative properties remain uncertain. Previous studies have most often reported global linear or sublinear summation. An alternative view, supported by biophysical modeling studies, holds that thin dendrites provide a layer of independent computational 'subunits' that sigmoidally modulate their inputs prior to global summation. To distinguish these possibilities, we combined confocal imaging and dual-site focal synaptic stimulation of identified thin dendrites in rat neocortical pyramidal neurons. We found that nearby inputs on the same branch summed sigmoidally, whereas widely separated inputs or inputs to different branches summed linearly. This strong spatial compartmentalization effect is incompatible with a global summation rule and provides the first experimental support for a two-layer 'neural network' model of pyramidal neuron thin-branch integration. Our findings could have important implications for the computing and memory-related functions of cortical tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Focal extracellular synaptic stimulation of identified regions in fine basal dendrites.
Figure 2: Comparison of within-branch and between-branch summation.
Figure 4: The effect of the NMDA receptor blocker APV on within-branch summation for single- and paired-pulse stimulation.
Figure 3: Time window for superlinear summation of two closely spaced dendritic sites (within-branch summation).
Figure 5: Defining the size of the nonlinear integration compartment.

Similar content being viewed by others

References

  1. Hausser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  CAS  Google Scholar 

  2. Magee, J., Hoffman, D., Colbert, C. & Johnston, D. Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327–346 (1998).

    Article  CAS  Google Scholar 

  3. Rhodes, P.A. Functional implications of active currents in the dendrites of pyramidal neurons. in Cerebral Cortex Vol. 13 (eds. Ulinski, P.S., Jones, E.G. & Peters, A.) 139–200 (Kluwer Academic Press, New York, 1999).

    Chapter  Google Scholar 

  4. Reyes, A. Influence of dendritic conductances on the input-output properties of neurons. Annu. Rev. Neurosci. 24, 653–675 (2001).

    Article  CAS  Google Scholar 

  5. Schiller, J. & Schiller, Y. NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr. Opin. Neurobiol. 11, 343–348 (2001).

    Article  CAS  Google Scholar 

  6. Migliore, M. & Shepherd, G.M. Emerging rules for the distributions of active dendritic conductances. Nat. Rev. Neurosci. 3, 362–370 (2002).

    Article  CAS  Google Scholar 

  7. Johnston, D., Magee, J., Colbert, C. & Cristie, B.R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    Article  CAS  Google Scholar 

  8. Margulis, M. & Tang, C.M. Temporal integration can readily switch between sublinear and supralinear summation. J. Neurophysiol. 79, 2809–2813 (1998).

    Article  CAS  Google Scholar 

  9. Urban, N.N. & Barrionuevo, G. Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 11450–11455 (1998).

    Article  CAS  Google Scholar 

  10. Cash, S. & Yuste, R. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–394 (1999).

    Article  CAS  Google Scholar 

  11. Magee, J.C. Dendritic integration of excitatory synaptic input. Nat. Rev. Neurosci. 1, 181–190 (2000).

    Article  CAS  Google Scholar 

  12. Nettleton, J.S. & Spain, W.J. Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. J. Neurophysiol. 83, 3310–3322 (2000).

    Article  CAS  Google Scholar 

  13. Oakley, J.C., Schwindt, P.C. & Crill, W.E. Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma. J. Neurophysiol. 86, 503–513 (2001).

    Article  CAS  Google Scholar 

  14. Tamas, G. Szabadics, J. & Somogyi, P. Cell type- and subcellular position dependent summation of unitary postsynaptic potentials in neocortical neurons. J. Neurosci. 22, 740–747 (2002).

    Article  CAS  Google Scholar 

  15. Hausser, M. & Mel, B.W. Dendrites: bug or feature. Curr. Opin. Neurobiol. 13, 372–383 (2003).

    Article  CAS  Google Scholar 

  16. Cauller, L.J. & Connors, B.W. Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J. Neurosci. 14, 751–762 (1994).

    Article  CAS  Google Scholar 

  17. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997).

    Article  CAS  Google Scholar 

  18. Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  Google Scholar 

  19. Oviedo, H. & Reyes, A.D. Boosting of neuronal firing evoked with asynchronous and synchronous inputs in the dendrite. Nat. Neurosci. 5, 261–266 (2002).

    Article  CAS  Google Scholar 

  20. Williams, S.R. & Stuart, G.J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002).

    Article  CAS  Google Scholar 

  21. Bernander, O., Koch, C. & Douglas, R.J. Amplification and linearization of distal synaptic input to cortical pyramidal cells. J. Neurophysiol. 70, 2743–2753 (1994).

    Article  Google Scholar 

  22. Cook, E.P. & Johnston, D. Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. J. Neurophysiol. 81, 535–543 (1999).

    Article  CAS  Google Scholar 

  23. Magee, J.C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).

    Article  CAS  Google Scholar 

  24. Magee, J.C. & Cook, E.P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 (2000).

    Article  CAS  Google Scholar 

  25. Larkman, A.U. Dendritic morphology of pyramidal neurons of the rat: spine distribution. J. Comp. Neurol. 306, 332–343 (1991).

    Article  CAS  Google Scholar 

  26. Megias, M., Emri, Z., Freund, T.F. & Gulyas, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  CAS  Google Scholar 

  27. Beaulieu, C. & Colonnier, M. A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J. Comp. Neurol. 231, 180–189 (1985).

    Article  CAS  Google Scholar 

  28. Schiller, J., Major, G., Koester, H.J. & Schiller, Y. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000).

    Article  CAS  Google Scholar 

  29. Wei, D-S. et al. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293, 2272–2275 (2001).

    Article  CAS  Google Scholar 

  30. Ariav, G., Polsky, A. & Schiller, J. Submillisecond precision of the input-output information function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 7750–7758 (2003).

    Article  CAS  Google Scholar 

  31. Poirazi, P., Brannon, T. & Mel, B.W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987 (2003).

    Article  CAS  Google Scholar 

  32. Poirazi, P., Brannon, T. & Mel, B.W. Pyramidal neuron as two-layer network. Neuron 37, 989–999 (2003).

    Article  CAS  Google Scholar 

  33. McClelland, J.L. & Rumelhart, D.E. Distribution memory and the representation of general and specific information. J. Exp. Psychol. Gen. 114, 159–197 (1985).

    Article  CAS  Google Scholar 

  34. Kepecs, A., Wang, X.J. & Lisman, J. Bursting neurons signal input slope. J. Neurosci. 22, 9053–9062 (2002).

    Article  CAS  Google Scholar 

  35. Mel, B.W. The clusteron: toward a simple abstraction for a complex neuron. in Advances in Neural Information Processing Systems, Vol. 4 (eds. Moody, J., Hanson, S. & Lippmann, R.) 35–42 (Morgan Kaufmann, San Mateo, CA, 1992).

    Google Scholar 

  36. Poirazi, P. & Mel, B.W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–796 (2001).

    Article  CAS  Google Scholar 

  37. Koch, C., Poggio, T. & Torre, V. Nonlinear interaction in a dendritic tree: localization, timing and role of information processing. Proc. Natl. Acad. Sci. USA 80, 2799–2802 (1983).

    Article  CAS  Google Scholar 

  38. Rall, W. & Segev, I. Functional possibilities for synapses on dendrites and on dendritic spines. in Synaptic Function (eds. Edelman, G., Gall, W. & Cowan, W.) 605–636 (Wiley, New York, 1987).

    Google Scholar 

  39. Shepherd, G.M. & Brayton, R. Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience 21, 151–165 (1987).

    Article  CAS  Google Scholar 

  40. Archie, K.A. & Mel, B.W. An intradendritic model for computation of binocular disparity. Nat. Neurosci. 3, 54–63 (2000).

    Article  CAS  Google Scholar 

  41. Mel, B.W., Ruderman, D.L. & Archie, K.A. Translation-invariant orientation tuning in visual 'complex'cells could derive from intradendritic computations. J. Neurosci. 18, 4325–4334 (1998).

    Article  CAS  Google Scholar 

  42. Euler, T., Detwiler P.B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).

    Article  CAS  Google Scholar 

  43. Borg-Graham, L.J. & Grzywacz, N. A model of the direction selectivity circuit in retina: transformations by neurons singly and in concert. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S.F.) 347–375 (Academic Press, Cambridge, Massachusetts, 1992).

    Chapter  Google Scholar 

  44. Single, S. & Borst, A. Dendritic integration and its role in computing image velocity. Science 281, 1848–1850 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hausser, M. London and Y. Schiller for their helpful comments on an earlier version of the manuscript. This study was supported by the National Institutes of Health, Israeli Science Foundation, National Science Foundation and the Rappaport Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackie Schiller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polsky, A., Mel, B. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7, 621–627 (2004). https://doi.org/10.1038/nn1253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing