Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Invariant computations in local cortical networks with balanced excitation and inhibition

Abstract

Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Orientation tuning of synaptic conductances for a cell in an orientation domain (ad) and at a pinwheel center (eh).
Figure 2: Additional examples of conductance tuning of cells in orientation domains and pinwheel centers.
Figure 3: Average tuning differences between cells at pinwheels and orientation domains.
Figure 5: Model predictions for synaptic conductances, membrane potentials and spike responses underlying orientation selectivity across the orientation map.
Figure 4: Anatomical analysis of local excitatory and inhibitory projections to pinwheel centers and orientation domains.

Similar content being viewed by others

References

  1. Mountcastle, V.B. Perceptual Neuroscience (Harvard University Press, Cambridge, MA, 1998).

    Google Scholar 

  2. Ferster, D. & Miller, K.D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    Article  CAS  Google Scholar 

  3. Martin, K.A. Microcircuits in visual cortex. Curr. Opin. Neurobiol. 12, 418–425 (2002).

    Article  CAS  Google Scholar 

  4. Monier, C., Chavane, F., Baudot, P., Graham, L.J. & Fregnac, Y. Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37, 663–680 (2003).

    Article  CAS  Google Scholar 

  5. Yao, H. & Dan, Y. Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32, 315–323 (2001).

    Article  CAS  Google Scholar 

  6. Dragoi, V. & Sur, M. Plasticity of orientation processing in adult visual cortex. in The Visual Neurosciences (eds. Chalupa, L.M. & Werner, J.S.) 1654–1664 (MIT Press, Cambridge, Massachusetts, 2003).

    Google Scholar 

  7. Somers, D.C., Nelson, S.B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  8. Suarez, H., Koch, C. & Douglas, R. Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J. Neurosci. 15, 6700–6719 (1995).

    Article  CAS  Google Scholar 

  9. Bonhoeffer, T. & Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429–431 (1991).

    Article  CAS  Google Scholar 

  10. Das, A. & Gilbert, C.D. Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 399, 655–661 (1999).

    Article  CAS  Google Scholar 

  11. Schummers, J., Mariño, J. & Sur, M. Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36, 969–978 (2002).

    Article  CAS  Google Scholar 

  12. Sharon, D. & Grinvald, A. Dynamics and constancy in cortical spatiotemporal patterns of orientation processing. Science 295, 512–515 (2002).

    Article  CAS  Google Scholar 

  13. Maldonado, P.E., Godecke, I., Gray, C.M. & Bonhoeffer, T. Orientation selectivity in pinwheel centers in cat striate cortex. Science 276, 1551–1555 (1997).

    Article  CAS  Google Scholar 

  14. Dragoi, V., Rivadulla, C. & Sur, M. Foci of orientation plasticity in visual cortex. Nature 411, 80–86 (2001).

    Article  CAS  Google Scholar 

  15. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  16. Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    Article  CAS  Google Scholar 

  17. Zhang, L.I., Tan, A.Y., Schreiner, C.E. & Merzenich, M.M. Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature 424, 201–205 (2003).

    Article  CAS  Google Scholar 

  18. Borg-Graham, L.J., Monier, C. & Fregnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    Article  CAS  Google Scholar 

  19. Anderson, J.S., Carandini, M. & Ferster, D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909–926 (2000).

    Article  CAS  Google Scholar 

  20. Hirsch, J.A. et al. Synaptic physiology of the flow of information in the cat's visual cortex in vivo. J. Physiol. 540, 335–350 (2002).

    Article  CAS  Google Scholar 

  21. Martinez, L.M., Alonso, J.M., Reid, R.C. & Hirsch, J.A. Laminar processing of stimulus orientation in cat visual cortex. J. Physiol. 540, 321–333 (2002).

    Article  CAS  Google Scholar 

  22. Kisvarday, Z.F., Toth, E., Rausch, M. & Eysel, U.T. Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex 7, 605–618 (1997).

    Article  CAS  Google Scholar 

  23. Roerig, B. & Chen, B. Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex. Cereb. Cortex 12, 187–198 (2002).

    Article  CAS  Google Scholar 

  24. Yousef, T., Toth, E., Rausch, M., Eysel, U.T. & Kisvarday, Z.F. Topography of orientation centre connections in the primary visual cortex of the cat. Neuroreport 12, 1693–1699 (2001).

    Article  CAS  Google Scholar 

  25. Destexhe, A., Rudolph, M., Fellous, J.M. & Sejnowski, T.J. Fluctuating synaptic conductances recreate in vivo–like activity in neocortical neurons. Neuroscience 107, 13–24 (2001).

    Article  CAS  Google Scholar 

  26. McLaughlin, D., Shapley, R., Shelley, M. & Wielaard, D.J. A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Cα. Proc. Natl. Acad. Sci. USA 97, 87–92 (2000).

    Google Scholar 

  27. Wielaard, D.J., Shelley, M., McLaughlin, D. & Shapley, R. How simple cells are made in a nonlinear network model of the visual cortex. J. Neurosci. 21, 5203–5211 (2001).

    Article  CAS  Google Scholar 

  28. Ben-Yishai, R., Bar-Or, R.L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).

    Article  CAS  Google Scholar 

  29. Mooser, F., Bosking, W.H. & Fitzpatrick, D. A morphological basis for orientation tuning in primary visual cortex. Nat. Neurosci. 7, 872–879 (2004).

    Article  CAS  Google Scholar 

  30. Reid, R.C. & Alonso, J.M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  CAS  Google Scholar 

  31. Lampl, I., Anderson, J.S., Gillespie, D.C. & Ferster, D. Prediction of orientation selectivity from receptive field architecture in simple cells of cat visual cortex. Neuron 30, 263–274 (2001).

    Article  CAS  Google Scholar 

  32. Carandini, M. & Ferster, D. Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20, 470–484 (2000).

    Article  CAS  Google Scholar 

  33. Volgushev, M., Pernberg, J. & Eysel, U.T. Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex. Eur. J. Neurosci. 12, 257–263 (2000).

    Article  CAS  Google Scholar 

  34. Azouz, R. & Gray, C.M. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron 37, 513–523 (2003).

    Article  CAS  Google Scholar 

  35. Shapley, R., Hawken, M. & Ringach, D.L. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron 38, 689–699 (2003).

    Article  CAS  Google Scholar 

  36. Crook, J.M., Kisvarday, Z.F. & Eysel, U.T. GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity. Vis. Neurosci. 14, 141–158 (1997).

    Article  CAS  Google Scholar 

  37. Mazer, J.A., Vinje, W.E., McDermott, J., Schiller, P.H. & Gallant, J.L. Spatial frequency and orientation tuning dynamics in area V1. Proc. Natl. Acad. Sci. USA 99, 1645–1650 (2002).

    Article  CAS  Google Scholar 

  38. Dragoi, V., Sharma, J., Miller, E.K. & Sur, M. Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nat. Neurosci. 5, 883–891 (2002).

    Article  CAS  Google Scholar 

  39. Ringach, D.L., Bredfeldt, C.E., Shapley, R.M. & Hawken, M.J. Suppression of neural responses to nonoptimal stimuli correlates with tuning selectivity in macaque V1. J. Neurophysiol. 87, 1018–1027 (2002).

    Article  Google Scholar 

  40. Nelson, S., Toth, L., Sheth, B. & Sur, M. Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science 265, 774–777 (1994).

    Article  CAS  Google Scholar 

  41. Bosking, W.H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).

    Article  CAS  Google Scholar 

  42. Angelucci, A. et al. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22, 8633–8646 (2002).

    Article  CAS  Google Scholar 

  43. Volgushev, M., Pernberg, J. & Eysel, U.T. γ-Frequency fluctuations of the membrane potential and response selectivity in visual cortical neurons. Eur. J. Neurosci. 17, 1768–1776 (2003).

    Article  Google Scholar 

  44. Williams, S.R. Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat. Neurosci. 7, 961–967 (2004).

    Article  CAS  Google Scholar 

  45. Troyer, T.W., Krukowski, A.E., Priebe, N.J. & Miller, K.D. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18, 5908–5927 (1998).

    Article  CAS  Google Scholar 

  46. Lauritzen, T.Z. & Miller, K.D. Different roles for simple-cell and complex-cell inhibition in V1. J. Neurosci. 23, 10201–10213 (2003).

    Article  CAS  Google Scholar 

  47. Hirsch, J.A. et al. Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nat. Neurosci. 6, 1300–1308 (2003).

    Article  CAS  Google Scholar 

  48. Liu, G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat. Neurosci. 7, 373–379 (2004).

    Article  CAS  Google Scholar 

  49. Desai, N.S., Cudmore, R.H., Nelson, S.B. & Turrigiano, G.G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 5, 783–789 (2002).

    Article  CAS  Google Scholar 

  50. Fagiolini, M. & Hensch, T.K. Excitatory-inhibitory balance controls critical period plasticity. in Excitatory-Inhibitory Balance: Synapses, Circuits, Systems (eds. Hensch, T.K. & Fagiolini, M.) 269–282 (Kluver Academic/Plenum, New York, 2003)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Educación y Ciencia, Spain (J.M.), Howard Hughes Medical Institute (J.S.), Deutsche Forschungsgemeinschaft Sonderforschungsbereiche 618, Germany (L.S., O.B., K.O.), Wellcome Trust (P.W., K.O.) and National Institutes of Health (D.C.L., M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mriganka Sur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Examples of data used to measure synaptic conductances and passive neuronal properties. (PDF 282 kb)

Supplementary Fig. 2

Analysis of accuracy of pinwheel targeting. (PDF 126 kb)

Supplementary Fig. 3

Results from the single-cell model, demonstrating that inhibition balances excitation and produces sharp tuning across the orientation map. (PDF 26 kb)

Supplementary Fig. 4

Results from the network model, demonstrating tuned conductances and sharp spike tuning at pinwheels and orientation domains. (PDF 34 kb)

Supplementary Fig. 5

Results from the network model, demonstrating that balanced recurrent excitation and inhibition are required for location invariant orientation tuning. (PDF 17 kb)

Supplementary Notes (PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariño, J., Schummers, J., Lyon, D. et al. Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8, 194–201 (2005). https://doi.org/10.1038/nn1391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing