Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stimulus context modulates competition in human extrastriate cortex

Abstract

When multiple stimuli appear simultaneously in the visual field, they are not processed independently, but rather interact in a mutually suppressive way, suggesting that they compete for neural representation in visual cortex. The biased competition model of selective attention predicts that the competition can be influenced by both top-down and bottom-up mechanisms. Directed attention has been shown to bias competition in favor of the attended stimulus in extrastriate cortex. Here, we show that suppressive interactions among multiple stimuli are eliminated in extrastriate cortex when they are presented in the context of pop-out displays, in which a single item differs from the others, but not in heterogeneous displays, in which all items differ from each other. The pop-out effects seemed to originate in early visual cortex and were independent of attentional top-down control, suggesting that stimulus context may provide a powerful influence on neural competition in human visual cortex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design and stimuli.
Figure 2: Time series of fMRI signals in visual cortex (experiment 1).
Figure 3: Mean signal changes and SSIs in visual cortex (experiment 1).
Figure 4: Mean signal changes in visual cortex (experiment 2).
Figure 5: Effects of pop-out and directed attention on suppressive interactions in human visual cortex.

Similar content being viewed by others

References

  1. Broadbent, D.E. Perception and Communication (Pergamon, London, 1958).

    Book  Google Scholar 

  2. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Duncan, J. Converging levels of analysis in the cognitive neuroscience of visual attention. Phil. Trans. R. Soc. Lond. B 353, 1307–1317 (1998).

    Article  CAS  Google Scholar 

  4. Miller, E.K., Gochin, P.M. & Gross, C.G. Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus. Brain Res. 616, 25–29 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Recanzone, G.H. & Wurtz, R.H. Effects of attention on MT and MST neuronal activity during pursuit initiation. J. Neurophysiol. 83, 777–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L.G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Kastner, S. et al. Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. J. Neurophysiol. 86, 1398–1411 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Bundesen, C. A theory of visual attention. Psychol. Res. 97, 523–547 (1990).

    CAS  Google Scholar 

  11. Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Treisman, A.M. & Gelade, G. A feature-integration theory of attention. Cognit. Psychol. 12, 97–136 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R. & Ungerleider, L.G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kastner, S. & Ungerleider, L.G. The neural basis of biased competition in the human visual cortex. Neuropsychologia 39, 1263–1276 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Corbetta, M. & Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Driver, J. & Baylis, G.C. Movement and visual attention: the spotlight metaphor breaks down. J. Exp. Psychol. Hum. Percept. Perform. 15, 448–456 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Duncan, J. Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113, 501–517 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Bundesen, C. & Pedersen, L.F. Color segregation and visual search. Percept. Psychophys. 33, 487–493 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Duncan, J. & Humphreys, G.W. Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Nothdurft, H.C. The role of features in preattentive vision: comparison of orientation, motion, and color cues. Vision Res. 33, 1937–1958 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Knierim, J.J. & Van Essen, D.C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Nothdurft, H.C., Gallant, J.L. & Van Essen, D.C. Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia. Vis. Neurosci. 16, 15–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kastner, S., Nothdurft, H.C. & Pigarev, I. Neuronal responses to motion and orientation contrast in cat striate cortex. Vis. Neurosci. 16, 587–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Yantis, S. Goal-directed and stimulus-driven determinants of attentional control. in Attention and Performance XVIII (eds. Monsell, S. & Driver, J.) 73–103 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  26. de Fockert, J.W., Rees, G., Frith, C. & Lavie, N. Neural correlates of attentional capture in visual search. J. Cogn. Neurosci. 16, 751–759 (2004).

    Article  PubMed  Google Scholar 

  27. Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P. & Shulman, G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Constantinidis, C. & Steinmetz, M.A. Posterior parietal cortex automatically encodes the location of salient stimuli. J. Neurosci. 25, 233–238 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Z. Contextual influences in V1 as a basis for pop-out and asymmetry in visual search. Proc. Natl. Acad. Sci. USA 96, 10530–10535 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reynolds, J.H. & Desimone, R. Interacting roles of attention and visual salience in V4. Neuron 37, 853–863 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Itti, L. & Koch, C. Computational modeling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Cave, K. & Wolfe, J. Modeling the role of parallel processing in visual search. Cognit. Psychol. 22, 225–271 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).

    CAS  PubMed  Google Scholar 

  34. Yantis, S. & Egeth, H.E. On the distinction between visual salience and stimulus-driven attentional capture. J. Exp. Psychol. Hum. Percept. Perform. 25, 661–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Neisser, U. Cognitive Psychology (Appleton-Century-Crofts, New York, 1967).

    Google Scholar 

  36. Gallant, J.L., Shoup, R.E. & Mazer, J.A. A human extrastriate area functionally homologous to macaque V4. Neuron 27, 227–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. De Weerd, P., Peralta, M.R., III, Desimone, R. & Ungerleider, L.G. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nat. Neurosci. 2, 753–758 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Schiller, P.H. & Lee, K. The role of the primate extrastriate area V4 in vision. Science 251, 1251–1253 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Wolfe, J.M., Cave, K.R. & Franzel, S.L. Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Ogawa, T. & Komatsu, H. Target selection in area V4 during a multidimensional visual search task. J. Neurosci. 24, 6371–6382 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carrasco, M., Ling, S. & Read, S. Attention alters appearance. Nat. Neurosci. 7, 308–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Kahneman, D. & Henik, A. Perceptual organization and attention. in Perceptual Organization (eds. Kubovy, M. & Pomerantz, J.R.) 181–211 (Erlbaum, Hillsdale, New Jersey, 1981).

    Google Scholar 

  43. Banks, W.P. & Prinzmetal, W. Configurational effects in visual information processing. Percept. Psychophys. 19, 361–367 (1976).

    Article  Google Scholar 

  44. Driver, J., Baylis, G.C. & Rafal, R.D. Preserved figure-ground segregation and symmetry perception in visual neglect. Nature 360, 73–75 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Astafiev, S.V., Stanley, C.M., Shulman, G.L. & Corbetta, M. Extrastriate body area in human occipital cortex responds to performance of motor actions. Nat. Neurosci. 7, 542–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Woods, R.P., Mazziotta, J.C. & Cherry, S.R. MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr. 17, 536–546 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Friston, K.J. et al. Analysis of fMRI time-series revisted. Neuroimage 2, 45–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Sereno, M.I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Treisman and H.-C. Nothdurft for discussions. This work was supported by grants from the US National Institute of Mental Health (RO1 MH-64043, P50 MH-62196) and the Whitehall Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane M Beck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mean signal changes and SSIs obtained with the two fixation tasks. (PDF 254 kb)

Supplementary Methods (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, D., Kastner, S. Stimulus context modulates competition in human extrastriate cortex. Nat Neurosci 8, 1110–1116 (2005). https://doi.org/10.1038/nn1501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing