Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Genetic mosaic with dual binary transcriptional systems in Drosophila

Abstract

MARCM (mosaic analysis with a repressible cell marker) involves specific labeling of GAL80-minus and GAL4-positive homozygous cells in otherwise heterozygous tissues. Here we demonstrate how the concurrent use of two independent binary transcriptional systems may facilitate complex MARCM studies in the Drosophila nervous system. By fusing LexA with the VP16 acidic activation domain (VP16) or the GAL4 activation domain (GAD), we obtained both GAL80-insensitive and GAL80-suppressible transcriptional factors. LexA::VP16 can mediate MARCM-independent binary transgene induction in mosaic organisms. The incorporation of LexA::GAD into MARCM, which we call dual-expression-control MARCM, permits the induction of distinct transgenes in different patterns among GAL80-minus cells in mosaic tissues. Lineage analysis with dual-expression-control MARCM suggested the presence of neuroglioblasts in the developing optic lobes but did not indicate the production of glia by postembryonic mushroom body neuronal precursors. In addition, dual-expression-control MARCM with a ubiquitous LexA::GAD driver revealed many unidentified cells in the GAL4-GH146-positive projection neuron lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MARCM and binary transcriptional systems.
Figure 2: GAL4- versus LexA-based binary transcription systems.
Figure 3: Differential expression of distinct transgenes in ORNs versus PNs.
Figure 4: Labeling of GAL80-minus neurons and glia by dual-expression-control MARCM.
Figure 5: Dual-expression-control MARCM with tubP-LexA::GAD and GAL4-GH146.

Similar content being viewed by others

References

  1. Xu, T. & Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  2. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  3. Zugates, C.T. & Lee, T. Genetic mosaic analysis in the nervous system. Curr. Opin. Neurobiol. 14, 647–653 (2004).

    Article  CAS  Google Scholar 

  4. Zong, H. et al. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  Google Scholar 

  5. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254 (2001).

    Article  CAS  Google Scholar 

  6. Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999).

    CAS  PubMed  Google Scholar 

  7. Jefferis, G.S., Marin, E.C., Stocker, R.F. & Luo, L. Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204–208 (2001).

    Article  CAS  Google Scholar 

  8. Lee, T. et al. Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25, 307–316 (2000).

    Article  CAS  Google Scholar 

  9. Wang, J. et al. Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43, 663–672 (2004).

    Article  CAS  Google Scholar 

  10. Lee, T. et al. Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 28, 807–818 (2000).

    Article  CAS  Google Scholar 

  11. Wang, J. et al. Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron 33, 559–571 (2002).

    Article  CAS  Google Scholar 

  12. Zheng, X. et al. TGF-β signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain. Cell 112, 303–315 (2003).

    Article  CAS  Google Scholar 

  13. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  14. Yang, M.Y. et al. Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron 15, 45–54 (1995).

    Article  Google Scholar 

  15. Manseau, L. et al. GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev. Dyn. 209, 310–322 (1997).

    Article  CAS  Google Scholar 

  16. Kidd, S., Lieber, T. & Young, M.W. Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 12, 3728–3740 (1998).

    Article  CAS  Google Scholar 

  17. Szuts, D. & Bienz, M. LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator. Proc. Natl. Acad. Sci. USA 97, 5351–5356 (2000).

    Article  CAS  Google Scholar 

  18. Estojak, J., Brent, R. & Golemis, E.A. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell. Biol. 15, 5820–5829 (1995).

    Article  CAS  Google Scholar 

  19. Brent, R. & Ptashne, M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729–736 (1985).

    Article  CAS  Google Scholar 

  20. Triezenberg, S.J., Kingsbury, R.C. & McKnight, S.L. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2, 718–729 (1988).

    Article  CAS  Google Scholar 

  21. Ma, J. & Ptashne, M. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50, 137–142 (1987).

    Article  CAS  Google Scholar 

  22. Stocker, R.F., Lienhard, M.C., Borst, A. & Fischbach, K.F. Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res. 262, 9–34 (1990).

    Article  CAS  Google Scholar 

  23. Ptashne, M. How eukaryotic transcriptional activators work. Nature 335, 683–689 (1988).

    Article  CAS  Google Scholar 

  24. Wang, J.W. et al. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  Google Scholar 

  25. Xiong, W.C. & Montell, C. Defective glia induce neuronal apoptosis in the Repo visual system of Drosophila. Neuron 14, 581–590 (1995).

    Article  CAS  Google Scholar 

  26. Laissue, P.P. et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 405, 543–552 (1999).

    Article  CAS  Google Scholar 

  27. Stocker, R.F., Heimbeck, G., Gendre, N. & deBelle, J.S. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J. Neurobiol. 32, 443–456 (1997).

    Article  CAS  Google Scholar 

  28. Connolly, J.B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996).

    Article  CAS  Google Scholar 

  29. Robinow, S. & White, K. Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. J. Neurobiol. 22, 443–461 (1991).

    Article  CAS  Google Scholar 

  30. Ito, K. et al. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurons and glial cells. Development 124, 761–771 (1997).

    CAS  PubMed  Google Scholar 

  31. Zhu, S., Chiang, A.S. & Lee, T. Development of the Drosophila mushroom bodies: elaboration, remodeling and spatial organization of dendrites in the calyx. Development 130, 2603–2610 (2003).

    Article  CAS  Google Scholar 

  32. Truman, J. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125, 145–157 (1988).

    Article  CAS  Google Scholar 

  33. Ito, K. & Hotta, Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol. 149, 134–148 (1992).

    Article  CAS  Google Scholar 

  34. Dearborn, R., Jr. & Kunes, S. An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development 131, 2291–2303 (2004).

    Article  CAS  Google Scholar 

  35. Wilson, R.I. & Laurent, G. Role of GABAergic inhibition in shaping ordor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    Article  CAS  Google Scholar 

  36. Duffy, J.B. GAL4 system in Drosophila: a fly geneticist's swiss army knife. Genesis 34, 1–15 (2002).

    Article  CAS  Google Scholar 

  37. Vojtek, A.B., Hollenberg, S.M. & Cooper, A.J. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  38. Wong, A.M., Wang, J.W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).

    Article  CAS  Google Scholar 

  39. Spradling, A.C. & Rubin, G.M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341–347 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ma for pBTM116, S. Hanes for pSH18-34 and G. Struhl for GF51; L. Luo and L. Vosshall for sending us GAL4-GH146 and Or83b-GAL4 flies, respectively; C.T. Zugates and B. Leung for critical reading of the manuscript. This work was supported by the US National Institutes of Health and March of Dimes Birth Defects Foundation. T.L. is a Klingenstein Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzumin Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Comparison of LexA::GAD/lexAop with GAL4/UAS (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, SL., Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9, 703–709 (2006). https://doi.org/10.1038/nn1681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing