Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons

Abstract

Sensory information from the periphery is integrated and transduced by excitatory and inhibitory interneurons in the dorsal spinal cord. Recent studies have identified a number of postmitotic factors that control the generation of these sensory interneurons. We show that Gsh1/2 and Ascl1 (Mash1), which are expressed in sensory interneuron progenitors, control the choice between excitatory and inhibitory cell fates in the developing mouse spinal cord. During the early phase of neurogenesis, Gsh1/2 and Ascl1 coordinately regulate the expression of Tlx3, which is a critical postmitotic determinant for dorsal glutamatergic sensory interneurons. However, at later developmental times, Ascl1 controls the expression of Ptf1a in dILA progenitors to promote inhibitory neuron differentiation while at the same time upregulating Notch signaling to ensure the proper generation of dILB excitatory neurons. We propose that this switch in Ascl1 function enables the cogeneration of inhibitory and excitatory sensory interneurons from a common pool of dorsal progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Gsh1/2, Ascl1 (Mash1) and Ptf1a in the dorsal spinal cord.
Figure 2: Gsh1/2 and Ascl1 are necessary for the specification of early-born dI5 neurons.
Figure 3: Switch in cell fate of late-born neurons in Gsh1/2−/− and Ascl1−/− mice.
Figure 4: Changes in transcription factor expression in Gsh1/2−/− and Ascl1−/− mice at E12.5.
Figure 5: Altered Ptf1a expression in Gsh1/2−/− and Ascl1−/− mice.
Figure 6: Ptf1a and Ascl1 overexpression represses the dILB fate of late-born interneurons.
Figure 7: Altered Notch signaling in Ascl1 mutants.
Figure 8: Notch signaling regulates late-born sensory interneuron specification.

Similar content being viewed by others

References

  1. Willis, W.D. & Coggeshall, R.E. Sensory Mechanisms of the Spinal Cord (Plenum, New York, 1991).

    Book  Google Scholar 

  2. Szentagothai, J. Neuronal and synaptic arrangement in the substantia gelatinosa rolandi. J. Comp. Neurol. 122, 219–239 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Woolf, C.J., Shortland, P. & Coggeshall, R.E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355, 75–78 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Fitzgerald, M. The development of nociceptive circuits. Nat. Rev. Neurosci. 6, 507–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Altman, J. & Bayer, S.A. The development of the rat spinal cord. Adv. Anat. Embryol. Cell Biol. 85, 1–164 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Gross, M.K., Dottori, M. & Goulding, M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34, 535–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Goulding, M., Lanuza, G., Sapir, T. & Narayan, S. The formation of sensorimotor circuits. Curr. Opin. Neurobiol. 12, 508–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Muller, T. et al. The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34, 551–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, L. et al. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat. Neurosci. 7, 510–517 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Glasgow, S.M., Henke, R.M., MacDonald, R.J. & Johnson, J.E. PTF1a specifies dorsal horn GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132, 5461–5469 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kriks, S., Lanuza, G.M., Mizuguchi, R., Nakafuku, M. & Goulding, M. Gsh2 is required for the repression of Ngn1 and specification of dorsal interneuron fate in the spinal cord. Development 132, 2991–3002 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Gowan, K. et al. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31, 219–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bermingham, N.A. et al. Proprioceptor pathway development is dependent on Math1. Neuron 30, 411–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Helms, A.W. et al. Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development 132, 2709–2719 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Matise, M. A dorsal elaboration in the spinal cord. Neuron 34, 491–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Caspary, T. & Anderson, K.V. Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat. Rev. Neurosci. 4, 289–297 (2003).

    Article  PubMed  Google Scholar 

  18. Casarosa, S., Fode, C. & Guillemot, F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534 (1999).

    CAS  PubMed  Google Scholar 

  19. McIntire, S.L., Reimer, R.J., Schuske, K., Edwards, R.H. & Jorgensen, E.M. Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Fremeau, R.T., Jr. et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, L. et al. Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat. Neurosci. 8, 1510–1515 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Hoshino, M. et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47, 201–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lai, E.C., Deblandre, G.A., Kintner, C. & Rubin, G.M. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev. Cell 1, 783–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. de la Pompa, J.L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  25. Koizumi, K. et al. The role of presenilin 1 during somite segmentation. Development 128, 1391–1402 (2001).

    CAS  PubMed  Google Scholar 

  26. Handler, M., Yang, X. & Shen, J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 127, 2593–2909 (2000).

    CAS  PubMed  Google Scholar 

  27. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Esni, F. et al. Notch inhibits Ptf1a function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development 131, 4213–4224 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Sapir, T. et al. Pax6 and Engrailed-1 regulate two distinct aspects of Renshaw cell development. J. Neurosci. 24, 1255–1264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, S., Misra, K., Matise, M.P. & Xiang, M. Foxn4 acts synergistically with Mash1 to specify subtype identity of V2 interneurons in the spinal cord. Proc. Natl. Acad. Sci. USA 102, 10688–10693 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, H., Zeitler, P.S., Valerius, M.T., Small, K. & Potter, S.S. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J. 15, 714–724 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szucsik, J.C. et al. Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev. Biol. 191, 230–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Gross, M.K. et al. Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127, 413–424 (2000).

    CAS  PubMed  Google Scholar 

  35. Muramatsu, T., Mizutani, Y., Ohmori, Y. & Okumura, J. Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Commun. 230, 376–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Goulding, M.D., Lumsden, A. & Gruss, P. Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord. Development 117, 1001–1016 (1993).

    CAS  PubMed  Google Scholar 

  37. Dottori, M., Gross, M.K., Labosky, P. & Goulding, M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128, 4127–4138 (2001).

    CAS  PubMed  Google Scholar 

  38. Jasoni, C.L., Walker, M.B., Morris, M.D. & Reh, T.A. A chicken achaete-scute homolog (CASH-1) is expressed in a temporally and spatially discrete manner in the developing nervous system. Development 120, 769–783 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Potter and K. Campbell for Gsh1 and Gsh2 heterozygous mice. Ascl1 heterozygous mice were provided by F. Guillemot. We thank J. Johnson, M. Bronner-Fraser and J. Boulter for Ptf1a, Cash1 and Dll1 cDNAs. Antibodies were provided by K. Campbell, T. Jessell, S. Morton, H. Edlund, T. Muller and D. Anderson. We also thank J. Johnson for sharing data before submission. E. Lamar, C. Kintner, G. Lanuza and O. Britz provided particularly helpful comments on the manuscript. This research was supported by grants from the US National Institutes of Health to M.G. and Q.M.

Author information

Authors and Affiliations

Authors

Contributions

R.M. and S.J. undertook all the experiments for this study. R.C. and A.G. generated the Dll1hypo mice and embryos used in this study. M.G., Q.M., R.M. and S.K. contributed to the experimental planning and writing of the manuscript.

Corresponding author

Correspondence to Martyn Goulding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Ptf1a is expressed in dorsal progenitors which have not exited the cell cycle. (PDF 1243 kb)

Supplementary Fig. 2

Genetic interactions that control inhibitory and excitatory cell fate specification in the dorsal spinal cord. (PDF 116 kb)

Supplementary Fig. 3

Mosaic Dl11 expression induces Tlx3 in presumptive dILB neurons. (PDF 1182 kb)

Supplementary Fig. 4

Reduction of dILB neurons in the dorsal horn of PS1−/− mutant. (PDF 478 kb)

Supplementary Fig. 5

Notch signaling is not activated in dorsal progenitors when early-born neurons are being generated. (PDF 666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuguchi, R., Kriks, S., Cordes, R. et al. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 9, 770–778 (2006). https://doi.org/10.1038/nn1706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing