Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions

Abstract

Emotions generally facilitate memory, an effect mediated by the basolateral amygdala (BLA). To study the underlying mechanisms, we recorded BLA, perirhinal and entorhinal neurons during an appetitive trace-conditioning task. We focused on the rhinal cortices because they constitute the interface between the hippocampus, a mediator of memory consolidation, and the neocortex, the storage site of declarative memories. We found that, after unexpected rewards, BLA activity increased impulse transmission from perirhinal to entorhinal neurons and that this effect decayed as the association between conditioned stimuli and rewards was learned. At this late phase of learning, the BLA effect occurred when the animals were anticipating the reward. By enhancing the processing of sensory cues, the BLA-mediated facilitation of rhinal interactions may explain how the amygdala promotes memory formation in emotional conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simultaneous recordings of amygdala, perirhinal, and entorhinal neurons.
Figure 2: Method used to compute STJHs and determine whether they are statistically significant.
Figure 3: Enhanced neuronal interactions within rhinal cortices around BLA activity.
Figure 4: BLA-related modifications of rhinal interactions during the presentation of unexpected liquid rewards.
Figure 5: Time-dependent changes in proportion of significant STJHs during learning in a trace-conditioning protocol.
Figure 6: Directionality of rhinal interactions facilitated by BLA activity.
Figure 7: Mechanisms underlying BLA modulation of rhinal interactions.

Similar content being viewed by others

References

  1. Christianson, S.A. Handbook of Emotion and Memory: Current Research and Theory (Erlbaum, Hillsdale, New Jersey, 1992).

    Google Scholar 

  2. Cahill, L., Babinsky, R., Markowitsch, H.J. & McGaugh, J.L. The amygdala and emotional memory. Nature 377, 295–296 (1995).

    Article  CAS  Google Scholar 

  3. Adolphs, R., Cahill, L., Schul, R. & Babinsky, R. Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learn. Mem. 4, 291–300 (1997).

    Article  CAS  Google Scholar 

  4. Adolphs, R., Tranel, D. & Buchanan, T.W. Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nat. Neurosci. 8, 512–518 (2005).

    Article  CAS  Google Scholar 

  5. McGaugh, J.L. et al. Involvement of the amygdaloid complex in neuromodulatory influences on memory storage. Neurosci. Biobehav. Rev. 14, 425–431 (1990).

    Article  CAS  Google Scholar 

  6. Roozendaal, B. & McGaugh, J.L. Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol. Learn. Mem. 65, 1–8 (1996).

    Article  CAS  Google Scholar 

  7. Phelps, E.A. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr. Opin. Neurobiol. 14, 198–202 (2004).

    Article  CAS  Google Scholar 

  8. Anderson, A.K. & Phelps, E.A. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411, 305–309 (2001).

    Article  CAS  Google Scholar 

  9. Phelps, E.A. & LeDoux, J.E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    Article  CAS  Google Scholar 

  10. Cahill, L. et al. Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc. Natl. Acad. Sci. USA 93, 8016–8021 (1996).

    Article  CAS  Google Scholar 

  11. Hamann, S.B., Ely, T.D., Grafton, S.T. & Kilts, C.D. Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nat. Neurosci. 2, 289–293 (1999).

    Article  CAS  Google Scholar 

  12. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  Google Scholar 

  13. Cahill, L. & McGaugh, J.L. Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci. 21, 294–299 (1998).

    Article  CAS  Google Scholar 

  14. Packard, M.G., Cahill, L. & McGaugh, J.L. Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proc. Natl. Acad. Sci. USA 91, 8477–8481 (1994).

    Article  CAS  Google Scholar 

  15. Quirarte, G.L., Roozendaal, B. & McGaugh, J.L. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 94, 14048–14053 (1997).

    Article  CAS  Google Scholar 

  16. Ferry, B., Roozendaal, B. & McGaugh, J.L. Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biol. Psychiatry 46, 1140–1152 (1999).

    Article  CAS  Google Scholar 

  17. Roozendaal, B., Okuda, S., Van der Zee, E.A. & McGaugh, J.L. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 103, 6741–6746 (2006).

    Article  CAS  Google Scholar 

  18. Pelletier, J.G., Likhtik, E., Filali, M. & Pare, D. Lasting increases in basolateral amygdala activity after emotional arousal: implications for facilitated consolidation of emotional memories. Learn. Mem. 12, 96–102 (2005).

    Article  Google Scholar 

  19. Seager, M.A., Asaka, Y. & Berry, S.D. Scopolamine disruption of behavioral and hippocampal responses in appetitive trace classical conditioning. Behav. Brain Res. 100, 143–151 (1999).

    Article  CAS  Google Scholar 

  20. Ferry, B., Wirth, S. & Di Scala, G. Functional interaction between entorhinal cortex and basolateral amygdala during trace conditioning of odor aversion in the rat. Behav. Neurosci. 113, 118–125 (1999).

    Article  CAS  Google Scholar 

  21. Munera, A., Gruart, A., Munoz, M.D. & Delgado-Garcia, J.M. Scopolamine impairs information processing in the hippocampus and performance of a learned eyeblink response in alert cats. Neurosci. Lett. 292, 33–36 (2000).

    Article  CAS  Google Scholar 

  22. Ryou, J.W., Cho, S.Y. & Kim, H.T. Lesions of the entorhinal cortex impair acquisition of hippocampal-dependent trace conditioning. Neurobiol. Learn. Mem. 75, 121–127 (2001).

    Article  CAS  Google Scholar 

  23. Baxter, M.G. & Murray, E.A. The amygdala and reward. Nat. Rev. Neurosci. 3, 563–573 (2002).

    Article  CAS  Google Scholar 

  24. Smith, Y. & Pare, D. Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J. Comp. Neurol. 342, 232–248 (1994).

    Article  CAS  Google Scholar 

  25. Pitkanen, A., Pikkarainen, M., Nurminen, N. & Ylinen, A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann. NY Acad. Sci. 911, 369–391 (2000).

    Article  CAS  Google Scholar 

  26. Witter, M.P. & Groenewegen, H.J. Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. J. Comp. Neurol. 252, 1–31 (1986).

    Article  CAS  Google Scholar 

  27. Burwell, R.D. & Witter, M.P. Basic anatomy of the parahippocampal region in monkeys and rats. in The Parahippocampal Region. (eds. Witter, M.P. & Wouterlood, F.) Ch. 3, 53–59 (Oxford University Press, New York, 2002).

    Google Scholar 

  28. Suzuki, W.A. & Eichenbaum, H. The neurophysiology of memory. Ann. NY Acad. Sci. 911, 175–191 (2000).

    Article  CAS  Google Scholar 

  29. Sutherland, G.R. & McNaughton, B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol. 10, 180–186 (2000).

    Article  CAS  Google Scholar 

  30. Squire, L.R., Stark, C.E. & Clark, R.E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    Article  CAS  Google Scholar 

  31. Pelletier, J.G., Apergis, J. & Pare, D. Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex. J. Neurophysiol. 91, 2079–2089 (2004).

    Article  Google Scholar 

  32. Pelletier, J.G., Apergis-Schoute, J. & Pare, D. Interaction between amygdala and neocortical inputs in the perirhinal cortex. J. Neurophysiol. 94, 1837–1848 (2005).

    Article  Google Scholar 

  33. Palm, G., Aertsen, A.M. & Gerstein, G.L. On the significance of correlations among neuronal spike trains. Biol. Cybern. 59, 1–11 (1988).

    Article  CAS  Google Scholar 

  34. Prut, Y. et al. Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79, 2857–2874 (1998).

    Article  CAS  Google Scholar 

  35. Kajiwara, R., Takashima, I., Mimura, Y., Witter, M.P. & Iijima, T. Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. J. Neurophysiol. 89, 2176–2184 (2003).

    Article  Google Scholar 

  36. Muir, G.M. & Bilkey, D.K. Theta- and movement velocity-related firing of hippocampal neurons is disrupted by lesions centered on the perirhinal cortex. Hippocampus 13, 93–108 (2003).

    Article  Google Scholar 

  37. Leutgeb, S., Leutgeb, J.K., Moser, M.B. & Moser, E.I. Place cells, spatial maps and the population code for memory. Curr. Opin. Neurobiol. 15, 738–746 (2005).

    Article  CAS  Google Scholar 

  38. Buckley, M.J. & Gaffan, D. Perirhinal cortex ablation impairs configural learning and paired-associate learning equally. Neuropsychologia 36, 535–546 (1998).

    Article  CAS  Google Scholar 

  39. Bussey, T.J., Saksida, L.M. & Murray, E.A. Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur. J. Neurosci. 15, 365–374 (2002).

    Article  Google Scholar 

  40. Murray, E.A. & Mishkin, M. Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. J. Neurosci. 6, 1991–2003 (1986).

    Article  CAS  Google Scholar 

  41. Brown, M.W. & Bashir, Z.I. Evidence concerning how neurons of the perirhinal cortex may effect familiarity discrimination. Phil. Trans. R. Soc. Lond. B 357, 1083–1095 (2002).

    Article  CAS  Google Scholar 

  42. Witter, M.P., Wouterlood, F.G., Naber, P.A. & Van Haeften, T. Anatomical organization of the parahippocampal-hippocampal network. Ann. NY Acad. Sci. 911, 1–24 (2000).

    Article  CAS  Google Scholar 

  43. de Curtis, M. & Pare, D. The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog. Neurobiol. 74, 101–110 (2004).

    Article  Google Scholar 

  44. Biella, G., Uva, L. & de Curtis, M. Propagation of neuronal activity along the neocortical-perirhinal-entorhinal pathway in the guinea pig. J. Neurosci. 22, 9972–9979 (2002).

    Article  CAS  Google Scholar 

  45. Pinto, A., Fuentes, C. & Pare, D. Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: ultrastructural study in guinea pigs. J. Comp. Neurol. 495, 722–734 (2006).

    Article  Google Scholar 

  46. Roesler, R., Roozendaal, B. & McGaugh, J.L. Basolateral amygdala lesions block the memory-enhancing effect of 8-Br-cAMP infused into the entorhinal cortex of rats after training. Eur. J. Neurosci. 15, 905–910 (2002).

    Article  Google Scholar 

  47. Luft, T., Pereira, G.S., Cammarota, M. & Izquierdo, I. Different time course for the memory facilitating effect of bicuculline in hippocampus, entorhinal cortex, and posterior parietal cortex of rats. Neurobiol. Learn. Mem. 82, 52–56 (2004).

    Article  CAS  Google Scholar 

  48. Holland, P.C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci. 3, 65–73 (1999).

    Article  CAS  Google Scholar 

  49. Everitt, B.J., Cardinal, R.N., Parkinson, J.A. & Robbins, T.W. Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann. NY Acad. Sci. 985, 233–250 (2003).

    Article  Google Scholar 

  50. Murray, E.A., Graham, K.S. & Gaffan, D. Perirhinal cortex and its neighbours in the medial temporal lobe: contributions to memory and perception. Q. J. Exp. Psychol. B 58, 378–396 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to members of the Paré lab for comments on an earlier version of this paper. This work was supported by RO1 grants MH-073610 and MH-066856 from the US National Institutes of Health to D.P. R.P. was supported by a Fulbright postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rony Paz or Denis Paré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Crosscorrelations between activity of BLA and rhinal neurons. (PDF 490 kb)

Supplementary Fig. 2

Location of significant bins in STJHs. (PDF 342 kb)

Supplementary Fig. 3

BLA-related effect is not observed in rostrocaudal axis. (PDF 247 kb)

Supplementary Fig. 4

Conditional probabilities of entorhinal firing. (PDF 323 kb)

Supplementary Fig. 5

Firing rate of rhinal neurons during trace-condoning. (PDF 420 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paz, R., Pelletier, J., Bauer, E. et al. Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions. Nat Neurosci 9, 1321–1329 (2006). https://doi.org/10.1038/nn1771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing