Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How MT cells analyze the motion of visual patterns

Abstract

Neurons in area MT (V5) are selective for the direction of visual motion. In addition, many are selective for the motion of complex patterns independent of the orientation of their components, a behavior not seen in earlier visual areas. We show that the responses of MT cells can be captured by a linear-nonlinear model that operates not on the visual stimulus, but on the afferent responses of a population of nonlinear V1 cells. We fit this cascade model to responses of individual MT neurons and show that it robustly predicts the separately measured responses to gratings and plaids. The model captures the full range of pattern motion selectivity found in MT. Cells that signal pattern motion are distinguished by having convergent excitatory input from V1 cells with a wide range of preferred directions, strong motion opponent suppression and a tuned normalization that may reflect suppressive input from the surround of V1 cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Component and pattern MT cell responses to plaid stimuli.
Figure 2: Quantification of neuronal responses to plaids.
Figure 3: The cascade model and its characterization.
Figure 4: Comparison of actual and model-predicted responses to plaids for five example cells.
Figure 5: Comparison of the pattern index observed and predicted by the cascade model.
Figure 6: Recovered models for five example MT neurons, corresponding to the same cells whose data are shown in Figure 4.
Figure 7: Relationship between the recovered cascade model parameters and pattern index.
Figure 8: Dissection of the elements of the cascade model that create particular kinds of selectivity for the motion of plaids.

Similar content being viewed by others

References

  1. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  2. Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. The analysis of moving visual patterns. in Pattern Recognition Mechanisms (Pontificiae Academiae Scientiarum Scripta Varia) Vol. 54 (eds. Chagas, C., Gattass, R. & Gross, C.) 117–151 (Vatican Press, Rome, 1985).

    Chapter  Google Scholar 

  3. Simoncelli, E.P. & Heeger, D.J. A model of neuronal responses in visual area MT. Vision Res. 38, 743–761 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  6. DeAngelis, G.C., Ohzawa, I. & Freeman, R.D. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. J. Neurophysiol. 69, 1091–1117 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Emerson, R.C., Bergen, J.R. & Adelson, E.H. Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 32, 203–218 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Adelson, E.H. & Movshon, J.A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Zeki, S.M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. (Lond.) 236, 549–573 (1974).

    Article  CAS  Google Scholar 

  10. Movshon, J.A. & Newsome, W.T. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16, 7733–7741 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carandini, M. et al. Do we know what the early visual system does? J. Neurosci. 25, 10577–10597 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 53–77 (1978).

    Article  CAS  Google Scholar 

  13. Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978).

    Article  CAS  Google Scholar 

  14. Jones, J.P., Stepnoski, A. & Palmer, L.A. The two-dimensional spectral structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1212–1232 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Mante, V. Testing Models of Cortical Area MT. Thesis, Institute of Neuroinformatics, ETH, University of Zurich (2000).

    Google Scholar 

  16. Smith, M.A., Majaj, N.J. & Movshon, J.A. Dynamics of motion signaling by neurons in macaque area MT. Nat. Neurosci. 8, 220–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Carandini, M., Heeger, D.J. & Movshon, J.A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lennie, P. & Movshon, J.A. Coding of color and form in the geniculostriate visual pathway. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22, 2013–2033 (2005).

    Article  PubMed  Google Scholar 

  19. Ringach, D.L., Sapiro, G. & Shapley, R. A subspace reverse-correlation technique for the study of visual neurons. Vision Res. 37, 2455–2464 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Theunissen, F.E., Sen, K. & Doupe, A.J. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J. Neurosci. 20, 2315–2331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. David, S.V., Vinje, W.E. & Gallant, J.L. Natural stimulus statistics alter the receptive field structure of V1 neurons. J. Neurosci. 24, 6991–7006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maunsell, J.H. & van Essen, D.C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3, 2563–2586 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sincich, L.C., Park, K.F., Wohlgemuth, M.J. & Horton, J.C. Bypassing V1: a direct geniculate input to area MT. Nat. Neurosci. 7, 1123–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Levitt, J.B., Kiper, D.C. & Movshon, J.A. Receptive fields and functional architecture of macaque V2. J. Neurophysiol. 71, 2517–2542 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Gegenfurtner, K.R., Kiper, D.C. & Levitt, J.B. Functional properties of neurons in macaque area V3. J. Neurophysiol. 77, 1906–1923 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Rodman, H.R., Gross, C.G. & Albright, T.D. Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J. Neurosci. 9, 2033–2050 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Collins, C.E., Lyon, D.C. & Kaas, J.H. Responses of neurons in the middle temporal visual area after long-standing lesions of the primary visual cortex in adult new world monkeys. J. Neurosci. 23, 2251–2264 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Geisler, W.S. & Albrecht, D.G. Cortical neurons: isolation of contrast gain control. Vision Res. 32, 1409–1410 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Albrecht, D.G. & Hamilton, D.B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. Cavanaugh, J.R., Bair, W. & Movshon, J.A. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J. Neurophysiol. 88, 2547–2556 (2002).

    Article  PubMed  Google Scholar 

  32. Cavanaugh, J.R., Bair, W. & Movshon, J.A. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J. Neurophysiol. 88, 2530–2546 (2002).

    Article  PubMed  Google Scholar 

  33. Sceniak, M.P., Hawken, M.J. & Shapley, R. Visual spatial characterization of macaque V1 neurons. J. Neurophysiol. 85, 1873–1887 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Livingstone, M.S., Pack, C.C. & Born, R.T. Two-dimensional substructure of MT receptive fields. Neuron 30, 781–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Pack, C.C., Livingstone, M.S., Duffy, K.R. & Born, R.T. End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron 39, 671–680 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Pack, C.C., Gartland, A.J. & Born, R.T. Integration of contour and terminator signals in visual area MT of alert macaque. J. Neurosci. 24, 3268–3280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van den Berg, A.V. & Noest, A.J. Motion transparency and coherence in plaids: the role of end-stopped cells. Exp. Brain Res. 96, 519–533 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Tinsley, C.J. et al. The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey. J. Neurophysiol. 90, 930–937 (2003).

    Article  PubMed  Google Scholar 

  39. Rockland, K.S. Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey. Vis. Neurosci. 3, 155–170 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Kohn, A. & Movshon, J.A. Neuronal adaptation to visual motion in area MT of the macaque. Neuron 39, 681–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Bair, W. & Movshon, J.A. Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. J. Neurosci. 24, 7305–7323 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sclar, G., Maunsell, J.H. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30, 1–10 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Britten, K.H. & Heuer, H.W. Spatial summation in the receptive fields of MT neurons. J. Neurosci. 19, 5074–5084 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rodman, H.R. & Albright, T.D. Coding of visual stimulus velocity in area MT of the macaque. Vision Res. 27, 2035–2048 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Rodman, H.R. & Albright, T.D. Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Exp. Brain Res. 75, 53–64 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Chance, F.S., Nelson, S.B. & Abbott, L.F. Complex cells as cortically amplified simple cells. Nat. Neurosci. 2, 277–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Priebe, N.J., Mechler, F., Carandini, M. & Ferster, D. The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nat. Neurosci. 7, 1113–1122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rust, N.C., Schwartz, O., Movshon, J.A. & Simoncelli, E.P. Spatiotemporal elements of macaque V1 receptive fields. Neuron 46, 945–956 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Efron, B. & Tibshirani, R.J. An Introduction to the Boostrap (Chapman & Hall/CRC Press, Boca Raton, Florida, 1993).

    Book  Google Scholar 

  50. Paninski, L. Maximum likelihood estimation of cascade point-process neural encoding models. Network 15, 243–262 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Carandini and N. Majaj for helpful discussions. This work was supported by the Howard Hughes Medical Institute through an Investigatorship to E.P.S. and by a grant from the National Eye Institute to J.A.M. (EY02017). V.M. was supported by a grant to M. Carandini from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole C Rust.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rust, N., Mante, V., Simoncelli, E. et al. How MT cells analyze the motion of visual patterns. Nat Neurosci 9, 1421–1431 (2006). https://doi.org/10.1038/nn1786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing