Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS

Abstract

A central event in synapse development is formation of the presynaptic active zone in response to positional cues. Three active zone proteins, RIM, ELKS (also known as ERC or CAST) and Liprin-α, bind each other and are implicated in linking active zone formation to synaptic vesicle release. Loss of function in Caenorhabditis eleganssyd-2 Liprin-α alters the size of presynaptic specializations and disrupts synaptic vesicle accumulation. Here we report that a missense mutation in the coiled-coil domain of SYD-2 causes a gain of function. In HSN synapses, the syd-2(gf) mutation promotes synapse formation in the absence of syd-1, which is essential for HSN synapse formation. syd-2(gf) also partially suppresses the synaptogenesis defects in syg-1 and syg-2 mutants. The activity of syd-2(gf) requires elks-1, an ELKS homolog; but not unc-10, a RIM homolog. The mutant SYD-2 shows increased association with ELKS. These results establish a functional dependency for assembly of the presynaptic active zone in which SYD-2 plays a key role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: syd-2 (ju487) suppresses egg-laying and HSN synapse defects of syd-1(lf).
Figure 2: syd-2(ju487gf) alters a conserved arginine in the coiled-coil domain of Liprin-α and is normally expressed and localized.
Figure 3: Synaptic localization of endogenous active zone proteins.
Figure 4: elks-1 is required for the suppression of syd-1 by syd-2(ju487gf) and SYD-2(R184C) shows increased association with ELKS-1.
Figure 5: syd-2(ju487gf) partially suppresses HSN synapse targeting defects in syg-1 and syg-2 mutants.

Similar content being viewed by others

References

  1. Zhai, R.G. & Bellen, H.J. The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19, 262–270 (2004).

    Google Scholar 

  2. Murthy, V.N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26, 701–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Bloom, F.E. The formation of synaptic junctions in developing rat brain. in Structure and Function of Synapses (eds. Pappas, G.D. & Purpura, D.P.) 101–120 (Raven Press, New York, 1972).

    Google Scholar 

  4. Ziv, N.E. & Garner, C.C. Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  PubMed  Google Scholar 

  6. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode C. elegans. Phil. Trans. R. Soc. Lond. B 314B, 1–340 (1986).

    Article  Google Scholar 

  7. Nonet, M.L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J. Neurosci. Methods 89, 33–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Jin, Y. Synaptogenesis. in WormBook (ed. The C. elegans Research Community) <http://www.wormbook.org> (2005).

    Google Scholar 

  9. Serra-Pages, C., Medley, Q.G., Tang, M., Hart, A. & Streuli, M. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J. Biol. Chem. 273, 15611–15620 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

    CAS  PubMed  Google Scholar 

  11. Yeh, E., Kawano, T., Weimer, R.M., Bessereau, J.L. & Zhen, M. Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J. Neurosci. 25, 3833–3841 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schoch, S. et al. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ohtsuka, T. et al. Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13–1. J. Cell Biol. 158, 577–590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ko, J., Na, M., Kim, S., Lee, J.R. & Kim, E. Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins. J. Biol. Chem. 278, 42377–42385 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y., Liu, X., Biederer, T. & Sudhof, T.C. A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones. Proc. Natl. Acad. Sci. USA 99, 14464–14469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, S. et al. The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. J. Biol. Chem. 278, 6291–6300 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Turner, C.E., West, K.A. & Brown, M.C. Paxillin-ARF GAP signaling and the cytoskeleton. Curr. Opin. Cell Biol. 13, 593–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Shin, H. et al. Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha. J. Biol. Chem. 278, 11393–11401 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Wyszynski, M. et al. Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron 34, 39–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Nakata, K. et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120, 407–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hallam, S.J., Goncharov, A., McEwen, J., Baran, R. & Jin, Y. SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nat. Neurosci. 5, 1137–1146 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Desai, C., Garriga, G., McIntire, S.L. & Horvitz, H.R. A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336, 638–646 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Shen, K. & Bargmann, C.I. The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112, 619–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Peters, J.M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. van Roessel, P., Elliott, D.A., Robinson, I.M., Prokop, A. & Brand, A.H. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Koushika, S.P. et al. A post-docking role for active zone protein Rim. Nat. Neurosci. 4, 997–1005 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deken, S.L. et al. Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J. Neurosci. 25, 5975–5983 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ackley, B.D. et al. The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J. Neurosci. 25, 7517–7528 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schafer, W.R. & Kenyon, C.J. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375, 73–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Olsen, O., Moore, K.A., Nicoll, R.A. & Bredt, D.S. Synaptic transmission regulated by a presynaptic MALS/Liprin-alpha protein complex. Curr. Opin. Cell Biol. 18, 223–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kaech, S.M., Whitfield, C.W. & Kim, S.K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 94, 761–771 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamagata, M., Sanes, J.R. & Weiner, J.A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Shen, K., Fetter, R.D. & Bargmann, C.I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116, 869–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Augustin, I., Rosenmund, C., Sudhof, T.C. & Brose, N. Munc13–1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Kaufmann, N., DeProto, J., Ranjan, R., Wan, H. & Van Vactor, D. Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34, 27–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Scheiffele, P. Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Sanes, J.R. & Yamagata, M. Formation of lamina-specific synaptic connections. Curr. Opin. Neurobiol. 9, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Finney, M. & Ruvkun, G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63, 895–905 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Shen (Stanford University) for kyIs235 marker, Punc-86GFP plasmid and for communicating unpublished data, A.D. Chisholm for advice on genetics and statistic analysis, the National Bioresource project for the Experimental Animal C. elegans for elks-1(tm1233), T. Ishihara (Kyushu University) for VenusGFP vector, J. McEwan and J. Kaplan (Massachusetts General Hospital) for Pttx-3-RFP and Pttx-3-GFP plasmids, and the members of the Jin and Chisholm labs for discussions. This work was supported by grants from the US National Institutes of Health to Y.J. and M.N., postdoctoral fellowships from Japanese Society for Promoting Science and the Uehara Memorial Foundation to H.T., a Canadian CIHR fellowship to B.G., and a Career Development Award from the Muscular Dystrophy Association to B.A. Y.D. is an research associate, and Y.J. is an investigator, of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Y.D., H.T. and Y.J. designed and Y.D. and H.T. performed the experiments, others provided reagents and contributed to data analysis, and Y.D. and Y.J. wrote the manuscript.

Corresponding author

Correspondence to Yishi Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SYD-1 and its mouse homologs. (PDF 488 kb)

Supplementary Fig. 2

Expression of SYD-2 in muscles cells is not affected in syd-1 mutants. (PDF 2461 kb)

Supplementary Fig. 3

Expression of UNC-10/RIM is not altered in syd-2(ju487gf). (PDF 970 kb)

Supplementary Fig. 4

Expression of SYD-1::GFP is not altered in syd-2, unc-10, or elks-1. (PDF 386 kb)

Supplementary Fig. 5

Summary of the genetic interactions between syd and syg genes in HSN synapses. (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Y., Taru, H., Deken, S. et al. SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS. Nat Neurosci 9, 1479–1487 (2006). https://doi.org/10.1038/nn1808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing