Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Limits on the memory storage capacity of bounded synapses

Abstract

Memories maintained in patterns of synaptic connectivity are rapidly overwritten and destroyed by ongoing plasticity related to the storage of new memories. Short memory lifetimes arise from the bounds that must be imposed on synaptic efficacy in any realistic model. We explored whether memory performance can be improved by allowing synapses to traverse a large number of states before reaching their bounds, or by changing the way these bounds are imposed. In the case of hard bounds, memory lifetimes grow proportional to the square of the number of synaptic states, but only if potentiation and depression are precisely balanced. Improved performance can be obtained without fine tuning by imposing soft bounds, but this improvement is only linear with respect to the number of synaptic states. We explored several other possibilities and conclude that improving memory performance requires a more radical modification of the standard model of memory storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distributions F of strength for synapses potentiated by the tracked memory and constrained by hard bounds.
Figure 2: Memory performance with hard bounds.
Figure 3: Soft bounds.
Figure 4: Memory performance with generalized soft boundaries.
Figure 5: Optimal soft-boundaries.

Similar content being viewed by others

References

  1. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  2. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  Google Scholar 

  3. Amit, D.J. Modeling Brain Function (Cambridge University Press, New York, 1989).

    Book  Google Scholar 

  4. Hertz, J., Krogh, A. & Palmer, R.G. Introduction to the Theory of Neural Computation (Addison Wesley Longman, Boston, 1991).

    Google Scholar 

  5. Amit, D.J. & Fusi, S. Constraints on learning in dynamic synapses. Network 3, 443–464 (1992).

    Article  Google Scholar 

  6. Amit, D.J. & Fusi, S. Learning in neural networks with material synapses. Neural Comput. 6, 957–982 (1994).

    Article  Google Scholar 

  7. Fusi, S. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates. Biol. Cybern. 87, 459–470 (2002).

    Article  Google Scholar 

  8. Staubli, U. & Lynch, G. Stable depression of potentiated synaptic responses in the hippocampus with 1–5 Hz stimulation. Brain Res. 513, 113–118 (1990).

    Article  CAS  Google Scholar 

  9. Larson, J., Xiao, P. & Lynch, G. Reversal of LTP by theta frequency stimulation. Brain Res. 600, 97–102 (1993).

    Article  CAS  Google Scholar 

  10. O'Dell, T.J. & Kandel, E.R. Low-frequency stimulation erases LTP through an NMDA receptor–mediated activation of protein phosphatases. Learn. Mem. 1, 129–139 (1994).

    CAS  PubMed  Google Scholar 

  11. Xiao, M.Y., Niu, Y.P. & Wigstrom, H. Activity-dependent decay of early LTP revealed by dual EPSP recording in hippocampal slices from young rats. Eur. J. Neurosci. 8, 1916–1923 (1996).

    Article  CAS  Google Scholar 

  12. Zhou, Q., Tao, H.W. & Poo, M-m. Reversal and stabilization of synaptic modifications in a developing visual system. Science 300, 1953–1957 (2003).

    Article  CAS  Google Scholar 

  13. Barnes, C.A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74–104 (1979).

    Article  CAS  Google Scholar 

  14. Ahissar, E. et al. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257, 1412–1415 (1992).

    Article  CAS  Google Scholar 

  15. Manahan-Vaughan, D. & Braunewell, K.H. Novelty acquisition is associated with induction of hippocampal long-term depression. Proc. Natl. Acad. Sci. USA 96, 8739–8744 (1999).

    Article  CAS  Google Scholar 

  16. Fu, Y.-X. et al. Temporal specificity in the cortical plasticity of visual space representation. Science 296, 1999–2003 (2002).

    Article  CAS  Google Scholar 

  17. Xu, L., Anwyl, R. & Rowan, M.J. Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394, 891–894 (1998).

    Article  CAS  Google Scholar 

  18. Abraham, W.C., Logan, B., Greenwood, J.M. & Dragunow, M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J. Neurosci. 22, 9626–9634 (2002).

    Article  CAS  Google Scholar 

  19. Villarreal, D.M., Do, V., Haddad, E. & Derrick, B.E. NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat. Neurosci. 5, 48–52 (2002).

    Article  CAS  Google Scholar 

  20. Jenkins, J. & Dallenbach, K. Oblivescence during sleep and waking period. Am. J. Psychol. 35, 605–612 (1924).

    Article  Google Scholar 

  21. Brown, M.W. & Xiang, J.Z. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55, 149–189 (1998).

    Article  CAS  Google Scholar 

  22. Wixted, J.T. & Ebbesen, E.B. Genuine power curves in forgetting: a quantitative analysis of individual subject forgetting functions. Mem. Cognit. 25, 731–739 (1997).

    Article  CAS  Google Scholar 

  23. Bi, G.-Q. & Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, ad postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  Google Scholar 

  24. Parisi, G. A memory which forgets. J. Phys. A. 19, L617–L620 (1986).

    Article  Google Scholar 

  25. Fusi, S., Drew, P.J. & Abbott, L.F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).

    Article  CAS  Google Scholar 

  26. Brunel, N., Carusi, F. & Fusi, S. Slow stochastic Hebbian learning of classes of stimuli in a recurrent neural network. Network 9, 123–152 (1998).

    Article  CAS  Google Scholar 

  27. Fusi, S. & Senn, W. Eluding oblivion with smart synaptic updates. Chaos 16, 026112 (2006).

    Article  Google Scholar 

  28. Kahn, P.E., Wong, K.Y.M. & Sherrington, D. A memory model with novel behaviour in sequential learning. Network. Comput. Neural Sys. 6, 415–427 (1995).

    Article  Google Scholar 

  29. van Rossum, M.C., Bi, G.Q. & Turrigiano, G.G. Stable Hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20, 8812–8821 (2000).

    Article  CAS  Google Scholar 

  30. Rubin, J.E. Steady states in an iterative model for multiplicative spike-timing dependent plasticity. Network 12, 131–140 (2001).

    Article  CAS  Google Scholar 

  31. Gutig, R., Aharonov, R., Rotter, S. & Sompolinsky, H. Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J. Neurosci. 23, 3697–3714 (2003).

    Article  CAS  Google Scholar 

  32. Festa, R. & Galleani D'Agliano, E. Diffusion coefficient for a brownian particle in a periodic field of force. Physica A 90A, 229–244 (1978).

    Article  Google Scholar 

  33. Petersen, C.C., Malenka, R.C., Nicoll, R.A. & Hopfield, J.J. All-or-none potentiation at CA3–CA1 synapses. Proc. Natl. Acad. Sci. USA 95, 4732–4737 (1998).

    Article  CAS  Google Scholar 

  34. O'Connor, D.H., Wittenberg, G.M. & Wang, S.S.-H. Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc. Natl. Acad. Sci. USA 102, 9679–9684 (2005).

    Article  CAS  Google Scholar 

  35. O'Connor, D.H., Wittenberg, G.M. & Wang, S.S.-H. Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J. Neurophysiol. 94, 1565–1573 (2005).

    Article  Google Scholar 

  36. Montgomery, J.M. & Madison, D.V. Discrete synaptic states define a major mechanism of synapse plasticity. Trends Neurosci. 27, 744–750 (2004).

    Article  CAS  Google Scholar 

  37. Scoville, W.B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  Google Scholar 

  38. Chklovskii, D.B., Mel, B.W. & Svoboda, K. Cortical rewiring and information storage. Nature 431, 782–788 (2004).

    Article  CAS  Google Scholar 

  39. Willshaw, D.J., Buneman, O.P. & Longuet-Higgins, H.C. Non-holographic associative memory. Nature 222, 960–962 (1969).

    Article  CAS  Google Scholar 

  40. Grossberg, S. Processing of expected and unexpected events during conditioning and attention: a psychophysiological theory. Psychol. Rev. 89, 529–572 (1982).

    Article  CAS  Google Scholar 

  41. Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).

    Article  CAS  Google Scholar 

  42. Block, H. The perceptron: a model for brain functioning. I. Rev. Mod. Phys. 34, 123–135 (1962).

    Article  Google Scholar 

  43. Minsky, M.L. & Papert, S.A. Perceptrons (MIT Press, Cambridge, Massachusetts, 1969; expanded edition, 1988).

    Google Scholar 

  44. Tsodyks, M.V. & Feigelman, M.V. The enhanced storage capacity in neural networks with low activity level. Europhys. Lett. 6, 101–105 (1988).

    Article  Google Scholar 

  45. Tsodyks, M.V. Associative memory in neural networks with binary synapses. Mod. Phys. Lett. B B4, 713–716 (1990).

    Article  Google Scholar 

  46. Abraham, W.C. & Bear, M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  Google Scholar 

  47. Fischer, T.M., Blazis, D.E., Priver, N.A. & Carew, T.J. Metaplasticity at identified inhibitory synapses in Aplysia. Nature 389, 860–865 (1997).

    Article  CAS  Google Scholar 

  48. Montgomery, J.M. & Madison, D.V. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron 33, 765–777 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Mattia for useful discussions about Brownian particles in periodic potentials. This research was supported by US National Institute of Mental Health grant 58754 and by a US National Institutes of Health Director's Pioneer Award, part of the NIH Roadmap for Medical Research, through grant number 5-DP1-OD114-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L F Abbott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fusi, S., Abbott, L. Limits on the memory storage capacity of bounded synapses. Nat Neurosci 10, 485–493 (2007). https://doi.org/10.1038/nn1859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1859

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing