Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Olfactory processing and behavior downstream from highly selective receptor neurons

Abstract

In both the vertebrate nose and the insect antenna, most olfactory receptor neurons (ORNs) respond to multiple odors. However, some ORNs respond to just a single odor, or at most to a few highly related odors. It has been hypothesized that narrowly tuned ORNs project to narrowly tuned neurons in the brain, and that these dedicated circuits mediate innate behavioral responses to a particular ligand. Here we have investigated neural activity and behavior downstream from two narrowly tuned ORN types in Drosophila melanogaster. We found that genetically ablating either of these ORN types impairs innate behavioral attraction to their cognate ligand. Neurons in the antennal lobe postsynaptic to one of these ORN types are, like their presynaptic ORNs, narrowly tuned to a pheromone. However, neurons postsynaptic to the second ORN type are broadly tuned. These results demonstrate that some narrowly tuned ORNs project to dedicated central circuits, ensuring a tight connection between stimulus and behavior, whereas others project to central neurons that participate in the ensemble representations of many odors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two narrowly tuned ORN types.
Figure 2: DA1 ORNs are required for behavioral attraction to cis-vaccenyl acetate.
Figure 3: VA6 ORNs are required for behavioral attraction to geranyl acetate.
Figure 4: DA1 projection neurons are narrowly tuned to cis-vaccenyl acetate.
Figure 5: VA6 projection neurons are more broadly tuned to odors than their presynaptic ORNs.
Figure 6: There is a significant transformation of odor tuning in glomerulus VA6, but not in DA1.

Similar content being viewed by others

References

  1. Duchamp-Viret, P., Chaput, M.A. & Duchamp, A. Odor response properties of rat olfactory receptor neurons. Science 284, 2171–2174 (1999).

    Article  CAS  Google Scholar 

  2. Malnic, B., Hirono, J., Sato, T. & Buck, L.B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  Google Scholar 

  3. de Bruyne, M., Foster, K. & Carlson, J.R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    Article  CAS  Google Scholar 

  4. Hildebrand, J.G. & Shepherd, G.M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595–631 (1997).

    Article  CAS  Google Scholar 

  5. Wilson, R.I. & Mainen, Z.F. Early events in olfactory processing. Annu. Rev. Neurosci. 29, 163–201 (2006).

    Article  CAS  Google Scholar 

  6. Boeckh, J., Kaissling, K.E. & Schneider, D. Insect olfactory receptors. Cold Spring Harb. Symp. Quant. Biol. 30, 263–280 (1965).

    Article  CAS  Google Scholar 

  7. Schneider, D. & Steinbrecht, R.A Checklist of insect olfactory sensilla. Symp. Zool. Soc. Lond. 23, 279–297 (1968).

    Google Scholar 

  8. Suh, G.S. et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854–859 (2004).

    Article  CAS  Google Scholar 

  9. Friedrich, R.W. & Korsching, S.I. Chemotopic, combinatorial and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J. Neurosci. 18, 9977–9988 (1998).

    Article  CAS  Google Scholar 

  10. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5, 263–278 (2004).

    Article  CAS  Google Scholar 

  11. Clyne, P., Grant, A., O'Connell, R. & Carlson, J.R. Odorant response of individual sensilla on the Drosophila antenna. Invert. Neurosci. 3, 127–135 (1997).

    Article  CAS  Google Scholar 

  12. de Bruyne, M., Clyne, P.J. & Carlson, J.R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532 (1999).

    Article  CAS  Google Scholar 

  13. Laissue, P.P. et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 405, 543–552 (1999).

    Article  CAS  Google Scholar 

  14. Hallem, E.A., Ho, M.G. & Carlson, J.R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004).

    Article  CAS  Google Scholar 

  15. Couto, A., Alenius, M. & Dickson, B.J. Molecular, anatomical and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005).

    Article  CAS  Google Scholar 

  16. Fishilevich, E. & Vosshall, L.B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005).

    Article  CAS  Google Scholar 

  17. Goldman, A.L., van der Goes van Naters, W., Lessing, D., Warr, C.G. & Carlson, J.R. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661–666 (2005).

    Article  CAS  Google Scholar 

  18. Yao, C.A., Ignell, R. & Carlson, J.R. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J. Neurosci. 25, 8359–8367 (2005).

    Article  CAS  Google Scholar 

  19. Hallem, E.A. & Carlson, J.R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    Article  CAS  Google Scholar 

  20. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002).

    Article  CAS  Google Scholar 

  21. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  Google Scholar 

  22. Wilson, R.I., Turner, G.C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004).

    Article  CAS  Google Scholar 

  23. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenbock, G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612 (2007).

    Article  CAS  Google Scholar 

  24. Derby, C.D. & Ache, B.W. Quality coding of a complex odorant in an invertebrate. J. Neurophysiol. 51, 906–924 (1984).

    Article  CAS  Google Scholar 

  25. Anton, S. & Hansson, B.S. Central processing of sex pheromone, host odour, and oviposition deterrent information by interneurons in the antennal lobe of female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Comp. Neurol. 350, 199–214 (1994).

    Article  CAS  Google Scholar 

  26. Boeckh, J. & Boeckh, V. Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum of Antheraea pernyi and A. polyphemus (Saturnidae). J. Comp. Physiol. [A] 132, 235–242 (1979).

    Article  CAS  Google Scholar 

  27. Christensen, T.A., Mustaparta, H. & Hildebrand, J.G. Chemical communication in heliothine moths. II. Central processing of intra- and interspecific olfactory messages in the male corn earworm moth Heliocoverpa zea. J. Comp. Physiol. [A] 169, 259–274 (1991).

    Article  Google Scholar 

  28. Vickers, N.J., Christensen, T.A. & Hildebrand, J.G. Combinatorial odor discrimination in the brain: attractive and antagonist odor blends are represented in distinct combinations of uniquely identifiable glomeruli. J. Comp. Neurol. 400, 35–56 (1998).

    Article  CAS  Google Scholar 

  29. Guerenstein, P.G., Christensen, T.A. & Hildebrand, J.G. Sensory processing of ambient CO2 information in the brain of the moth Manduca sexta. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190, 707–25 (2004).

    Article  Google Scholar 

  30. Lin, D.Y., Zhang, S-Z., Block, E. & Katz, L.C. Encoding social signals in the mouse main olfactory bulb. Nature 434, 470–477 (2005).

    Article  CAS  Google Scholar 

  31. Christensen, T.A. & Hildebrand, J.G. Pheromonal and host-odor processing in the insect antennal lobe: how different? Curr. Opin. Neurobiol. 12, 393–399 (2002).

    Article  CAS  Google Scholar 

  32. Baxi, K.N., Dorries, K.M. & Eisthen, H.L. Is the vomeronasal system really specialized for detecting pheromones? Trends Neurosci. 29, 1–7 (2006).

    Article  CAS  Google Scholar 

  33. Xu, P., Atkinson, R., Jones, D.N. & Smith, D.P. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45, 193–200 (2005).

    Article  CAS  Google Scholar 

  34. Ha, T.S. & Smith, D.P. A pheromone receptor mediates 11-cis-vaccenyl acetate–induced responses in Drosophila. J. Neurosci. 26, 8727–8733 (2006).

    Article  CAS  Google Scholar 

  35. Light, D.M., Jang, E.B., Binder, R.G., Flath, R.A. & Kint, S. Minor and intermediate components enhance attraction of female Mediterranean fruit flies to natural male odor pheromone and its synthetic major components. J. Chem. Ecol. 25, 2757–2777 (1999).

    Article  CAS  Google Scholar 

  36. Vinje, W.E. & Gallant, J.L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).

    Article  CAS  Google Scholar 

  37. Bartelt, R.J., Schaner, A.M. & Jackson, L.L. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11, 1747–1756 (1985).

    Article  CAS  Google Scholar 

  38. Jefferis, G.S. et al. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development 131, 117–130 (2004).

    Article  CAS  Google Scholar 

  39. Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002).

    Article  CAS  Google Scholar 

  40. Marin, E.C., Watts, R.J., Tanaka, N.K., Ito, K. & Luo, L. Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 132, 725–737 (2005).

    Article  CAS  Google Scholar 

  41. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B.J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005).

    Article  CAS  Google Scholar 

  42. Manoli, D.S. et al. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400 (2005).

    Article  CAS  Google Scholar 

  43. Dulac, C. & Wagner, S. Genetic analysis of brain circuits underlying pheromone signaling. Annu. Rev. Genet. 40, 449–467 (2006).

    Article  CAS  Google Scholar 

  44. Shanbhag, S.R., Muller, B. & Steinbrecht, R.A. Atlas of olfactory organs of Drosophila melanogaster. 1. Types, external organization, innervation and distribution of olfactory sensilla. Int. J. Insect Morphol. Embryol. 28, 377–397 (1999).

    Article  Google Scholar 

  45. Sankaranarayanan, S. & Ryan, T.A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell Biol. 2, 197–204 (2000).

    Article  CAS  Google Scholar 

  46. Pologruto, T.A., Yasuda, R. & Svoboda, K. Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci. 24, 9572–9579 (2004).

    Article  CAS  Google Scholar 

  47. Wilson, R.I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    Article  CAS  Google Scholar 

  48. Fishilevich, E. et al. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr. Biol. 15, 2086–2096 (2005).

    Article  CAS  Google Scholar 

  49. Stensmyr, M.C., Dekker, T. & Hansson, B.S. Evolution of the olfactory code in the Drosophila melanogaster subgroup. Proc. R. Soc. Lond. B 270, 2333–2340 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Vosshall, B. Dickson, L. Stevens and L. Luo for gifts of fly stocks, and to V. Bhandawat for help with single-sensillum recordings. C. Dulac and members of the Wilson lab provided feedback on earlier versions of the manuscript. Funding was provided by a Pew Scholarship in the Biomedical Sciences, a New Investigator Award from the Smith Family Foundation, an Armenise-Harvard Junior Faculty Grant, a Loreen Arbus Scholarship in Neuroscience and a grant from the US National Institutes of Health (RO1 1R01DC008174-01).

Author information

Authors and Affiliations

Authors

Contributions

This study was jointly designed by M.L.S. and R.I.W. The experiments and data analysis were performed by M.L.S., and M.L.S. and R.I.W. jointly wrote the paper.

Corresponding author

Correspondence to Rachel I Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

In Or67d-Gal4 flies, Gal4 is expressed ectopically in ab5A ORNs. (PDF 398 kb)

Supplementary Fig. 2

VA6 ORNs respond more strongly to geranyl acetate than to other highly related odors. (PDF 156 kb)

Supplementary Table 1 (PDF 90 kb)

Supplementary Methods (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlief, M., Wilson, R. Olfactory processing and behavior downstream from highly selective receptor neurons. Nat Neurosci 10, 623–630 (2007). https://doi.org/10.1038/nn1881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing