Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caenorhabditis elegans TRPA-1 functions in mechanosensation

Abstract

Members of the transient receptor potential (TRP) ion channel family mediate diverse sensory transduction processes in both vertebrates and invertebrates. In particular, members of the TRPA subfamily have distinct thermosensory roles in Drosophila, and mammalian TRPA1 is postulated to have a function in noxious cold sensation and mechanosensation. Here we show that mutations in trpa-1, the C. elegans ortholog of mouse Trpa1, confer specific defects in mechanosensory behaviors related to nose-touch responses and foraging. trpa-1 is expressed and functions in sensory neurons required for these mechanosensory behaviors, and contributes to neural responses of these cells to touch, particularly after repeated mechanical stimulation. Furthermore, mechanical pressure can activate C. elegans TRPA-1 heterologously expressed in mammalian cells. Collectively, these data demonstrate that trpa-1 encodes an ion channel that can be activated in response to mechanical pressure and is required for mechanosensory neuron function, suggesting a possible role in mechanosensory transduction or modulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRPA-1::GFP fusion protein is expressed in neuron and non-neuronal cell types.
Figure 2: Effect of trpa-1 on head foraging movements.
Figure 3: trpa-1 mutants are defective in the head withdrawal reflex.
Figure 4: trpa-1 mutants have defects in reversal response to nose-touch, but are normal for ASH-mediated osmosensory and chemosensory avoidance behaviors.
Figure 5: Effects of trpa-1 on neural responses to nose-touch in OLQ and ASH.
Figure 6: Mechanical stimuli activate TRPA-1-expressing CHO cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Goodman, M.B. Mechanosensation. in WormBook, ed. The C. elegans Research Community, doi:10.1895/wormbook.1.62.1, http://www.wormbook.org, 6 January 2006.

    Google Scholar 

  2. Chalfie, M. et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964 (1985).

    Article  CAS  Google Scholar 

  3. Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033 (1989).

    Article  CAS  Google Scholar 

  4. Goodman, M.B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002).

    Article  CAS  Google Scholar 

  5. Bianchi, L. et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci. 7, 1337–1344 (2004).

    Article  CAS  Google Scholar 

  6. Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

    Article  CAS  Google Scholar 

  7. O'Hagan, R., Chalfie, M. & Goodman, M.B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8, 43–50 (2005).

    Article  CAS  Google Scholar 

  8. Kaplan, J.M. & Horvitz, H.R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90, 2227–2231 (1993).

    Article  CAS  Google Scholar 

  9. Colbert, H.A., Smith, T.L. & Bargmann, C.I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17, 8259–8269 (1997).

    Article  CAS  Google Scholar 

  10. Hart, A.C., Sims, S. & Kaplan, J.M. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82–85 (1995).

    Article  CAS  Google Scholar 

  11. Alkema, M.J., Hunter-Ensor, M., Ringstad, N. & Horvitz, H.R. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46, 247–260 (2005).

    Article  CAS  Google Scholar 

  12. Harbinder, S. et al. Genetically targeted cell disruption in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94, 13128–13133 (1997).

    Article  CAS  Google Scholar 

  13. Pedersen, S.F., Owsianik, G. & Nilius, B. TRP channels: an overview. Cell Calcium 38, 233–252 (2005).

    Article  CAS  Google Scholar 

  14. Patapoutian, A., Peier, A.M., Story, G.M. & Viswanath, V. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4, 529–539 (2003).

    Article  CAS  Google Scholar 

  15. Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  Google Scholar 

  16. Obata, K. et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 115, 2393–2401 (2005).

    Article  CAS  Google Scholar 

  17. Corey, D.P. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723–730 (2004).

    Article  CAS  Google Scholar 

  18. Bautista, D.M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  Google Scholar 

  19. Kwan, K.Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 177–189 (2006).

    Article  Google Scholar 

  20. Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse. Nature 423, 822–823 (2003).

    Article  CAS  Google Scholar 

  21. Rosenzweig, M. et al. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19, 419–424 (2005).

    Article  CAS  Google Scholar 

  22. Lee, Y. et al. Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37, 305–310 (2005).

    Article  CAS  Google Scholar 

  23. Tracey, W.D., Wilson, R.I., Laurent, G. & Benzer, S. painless, a Drosophila Gene Essential for Nociception. Cell 113, 261–273 (2003).

    Article  CAS  Google Scholar 

  24. White, J.G., Southgate, E., Thompson, J.N. & Brenner, S. The structure of the nervous system of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  25. Tobin, D. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35, 307–318 (2002).

    Article  CAS  Google Scholar 

  26. Troemel, E.R., Chou, J.H., Dwyer, N.D., Colbert, H.A. & Bargmann, C.I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83, 207–218 (1995).

    Article  CAS  Google Scholar 

  27. Hilliard, M.A. et al. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J. 24, 63–72 (2005); erratum 24, 1489 (2005).

    Article  CAS  Google Scholar 

  28. Cho, H., Shin, J., Shin, C.Y., Lee, S.Y. & Oh, U. Mechanosensitive ion channels in cultured sensory neurons of neonatal rats. J. Neurosci. 22, 1238–1247 (2002).

    Article  CAS  Google Scholar 

  29. Hamill, O.P. & McBride, D.W., Jr. Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annu. Rev. Physiol. 59, 621–631 (1997).

    Article  CAS  Google Scholar 

  30. McBride, D.W., Jr. & Hamill, O.P. Simplified fast pressure-clamp technique for studying mechanically gated channels. Methods Enzymol. 294, 482–489 (1999).

    Article  CAS  Google Scholar 

  31. Chakfe, Y., Zhang, Z. & Bourque, C.W. IL-1β directly excites isolated rat supraoptic neurons via upregulation of the osmosensory cation current. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1183–R1190 (2006).

    Article  CAS  Google Scholar 

  32. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  CAS  Google Scholar 

  33. Macpherson, L.J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  Google Scholar 

  34. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  Google Scholar 

  35. Kanzaki, M. et al. Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285, 882–886 (1999); erratum 285, 1493 (1999).

    Article  CAS  Google Scholar 

  36. Nagata, K., Duggan, A., Kumar, G. & Garcia-Anoveros, J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 25, 4052–4061 (2005).

    Article  CAS  Google Scholar 

  37. Sachs, F. & Yang, X.C. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. J. Physiol. (Lond.) 431, 103–122 (1990).

    Article  Google Scholar 

  38. Xu, H., Blair, N.T. & Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924–8937 (2005).

    Article  CAS  Google Scholar 

  39. Montell, C. The TRP superfamily of cation channels. Sci. STKE [online] 2005, re3 (2005).

    Google Scholar 

  40. Walker, R.G., Willingham, A.T. & Zuker, C.S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).

    Article  CAS  Google Scholar 

  41. Roayaie, K., Crump, J.G., Sagasti, A. & Bargmann, C.I. The Gα protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20, 55–67 (1998).

    Article  CAS  Google Scholar 

  42. Chalfie, M. A molecular model for mechanosensation in Caenorhabditis elegans. Biol. Bull. 192, 125 (1997).

    Article  CAS  Google Scholar 

  43. Zurborg, S., Yurgionas, B., Jira, J.A., Caspani, O. & Heppenstall, P.A. Direct activation of the ion channel TRPA1 by Ca2+. Nat. Neurosci. 10, 277–279 (2007).

    Article  CAS  Google Scholar 

  44. Macpherson, L.J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  Google Scholar 

  45. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  46. Palmer, A.E., Jin, C., Reed, J.C. & Tsien, R.Y. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc. Natl. Acad. Sci. USA 101, 17404–17409 (2004).

    Article  CAS  Google Scholar 

  47. Hasan, M.T. et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol. 2, e163 (2004).

    Article  Google Scholar 

  48. Cheung, B.H., Arellano-Carbajal, F., Rybicki, I. & de Bono, M. Soluble guanylate cyclases act in neurons exposed to the body fluid to promote C. elegans aggregation behavior. Curr. Biol. 14, 1105–1111 (2004).

    Article  CAS  Google Scholar 

  49. Hilliard, M.A., Bargmann, C.I. & Bazzicalupo, P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr. Biol. 12, 730–734 (2002).

    Article  CAS  Google Scholar 

  50. Chanda, S.K. et al. Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc. Natl. Acad. Sci. USA 100, 12153–12158 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Lesa for genomic DNA and technical advice, A. Huang for his assistance with the automated worm tracker, G. Story for technical assistance and T. Jegla for assistance and discussions. We would also like to thank C. Bargmann, Rockefeller University for providing constructs and for help finding a suitable promoter to image the OLQ neurons. A. Fire (Carnegie Institution of Washington) supplied us with GFP expression vectors. We would also like to thank M. de Bono, for comments and guidance in neuronal identification. We thank the C. elegans gene knockout project at Oklahoma Medical Research Facility for providing the ok999 strain, and the National Bioresource Project and the Mitani laboratory (Tokyo Women's Medical University) for providing the tm1402 strain. This research was partially supported by US National Institutes of Health grants R01DE016927 to A.P and R01DA016445 and R01DA018341 to W.R.S., and a Ruth Kirschstein Predoctoral Fellowship to K.S.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ardem Patapoutian or William R Schafer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Phylogenetic tree of TRPA subfamily. (PDF 356 kb)

Supplementary Fig. 2

C. elegans TRPA-1 is a member of the TRPA subfamily of TRP channels. (PDF 260 kb)

Supplementary Fig. 3

The full length cTRPA-1 GFP fusion, ljEx114 colocalizes with pdel-2::RFP in the Il1 and OLQ neurons. (PDF 679 kb)

Supplementary Fig. 4

C. elegans TRPA-1 is not required for body touch responses and normal thermotaxis. (PDF 1236 kb)

Supplementary Fig. 5

Baseline cameleon levels in wildtype and trpa-1 mutants, and raw imaging data. (PDF 1447 kb)

Supplementary Fig. 6

Mechanical stimuli activate TRPA-1-expressing CHO cells. (PDF 916 kb)

Supplementary Methods (PDF 117 kb)

Supplementary Results (PDF 160 kb)

Supplementary Video 1

Reversal response to nose touch. As animal makes a nose-on collision with an eyelash, 80% of the time a reversal or backward movement is initiated. (AVI 520 kb)

Supplementary Video 2

Head withdrawal response to nose touch. In addition to a reversal response, 15% of the time animals display a head withdrawal upon encounter with the eyelash. (AVI 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kindt, K., Viswanath, V., Macpherson, L. et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat Neurosci 10, 568–577 (2007). https://doi.org/10.1038/nn1886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing