Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport

Abstract

The morphological transition of growth cones to synaptic boutons characterizes synaptogenesis. Here we have isolated mutations in immaculate connections (imac; CG8566), a previously uncharacterized Drosophila gene encoding a member of the Kinesin-3 family. Whereas earlier studies in Drosophila implicated Kinesin-1 in transporting synaptic vesicle precursors, we find that Imac is essential for this transport. An unexpected feature of imac mutants is the failure of synaptic boutons to form. Motor neurons lacking imac properly target to muscles but remain within target fields as thin processes, a structure that is distinct from either growth cones or mature terminals. Few active zones form at these endings. We show that the arrest of synaptogenesis is not a secondary consequence of the absence of transmission. Our data thus indicate that Imac transports components required for synaptic maturation and provide insight into presynaptic maturation as a process that can be differentiated from axon outgrowth and targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective photoreceptor synaptic transmission and motor neuron synapse formation in imac mutants.
Figure 2: imac encodes a kinesin.
Figure 3: Synaptic and dense-core vesicle proteins are absent in imac nerve endings.
Figure 4: Synaptic vesicle proteins are selectively concentrated in cell bodies.
Figure 5: Altered developmental distribution of the active-zone marker nc82 in imac mutants.
Figure 6: Synaptic vesicles are rare and active zones are few in imac nerve profiles.
Figure 7: Postsynaptic differentiation in imac mutants.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ziv, N.E. & Garner, C.C. Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385–399 (2004).

    Article  CAS  Google Scholar 

  2. Lee, H. & Van Vactor, D. Neurons take shape. Curr. Biol. 13, R152–R161 (2003).

    Article  CAS  Google Scholar 

  3. Hannah, M.J., Schmidt, A.A. & Huttner, W.B. Synaptic vesicle biogenesis. Annu. Rev. Cell Dev. Biol. 15, 733–798 (1999).

    Article  CAS  Google Scholar 

  4. Friedman, H.V., Bresler, T., Garner, C.C. & Ziv, N.E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 57–69 (2000).

    Article  CAS  Google Scholar 

  5. Roos, J. & Kelly, R.B. Preassembly and transport of nerve terminals: a new concept of axonal transport. Nat. Neurosci. 3, 415–417 (2000).

    Article  CAS  Google Scholar 

  6. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  Google Scholar 

  7. Kraszewski, K. et al. Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J. Neurosci. 15, 4328–4342 (1995).

    Article  CAS  Google Scholar 

  8. Shapira, M. et al. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 38, 237–252 (2003).

    Article  CAS  Google Scholar 

  9. Zhai, R.G. et al. Assembling the presynaptic active zone: a characterization of an active zone precursor vesicle. Neuron 29, 131–143 (2001).

    Article  CAS  Google Scholar 

  10. Sanes, J.R. & Lichtman, J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  Google Scholar 

  11. Featherstone, D.E. & Broadie, K. Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity. Brain Res. Bull. 53, 501–511 (2000).

    Article  CAS  Google Scholar 

  12. Yoshihara, M., Rheuben, M.B. & Kidokoro, Y. Transition from growth cone to functional motor nerve terminal in Drosophila embryos. J. Neurosci. 17, 8408–8426 (1997).

    Article  CAS  Google Scholar 

  13. Rheuben, M.B., Yoshihara, M. & Kidokoro, Y. Ultrastructural correlates of neuromuscular junction development. Int. Rev. Neurobiol. 43, 69–92 (1999).

    Article  CAS  Google Scholar 

  14. Stowers, R.S. & Schwarz, T.L. A Genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dickman, D.K., Horne, J.A., Meinertzhagen, I.A. & Schwarz, T.L. A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 123, 521–533 (2005).

    Article  CAS  Google Scholar 

  16. Chang, T.N. & Keshishian, H. Laser ablation of Drosophila embryonic motoneurons causes ectopic innervation of target muscle fibers. J. Neurosci. 16, 5715–5726 (1996).

    Article  CAS  Google Scholar 

  17. Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nat. Genet. 29, 475–481 (2001).

    Article  CAS  Google Scholar 

  18. Loren, C.E. et al. A crucial role for the Anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Rep. 4, 781–786 (2003).

    Article  CAS  Google Scholar 

  19. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  20. Broadie, K.S. & Bate, M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J. Neurosci. 13, 144–166 (1993).

    Article  CAS  Google Scholar 

  21. Hall, D.H. & Hedgecock, E.M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837–847 (1991).

    Article  CAS  Google Scholar 

  22. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995).

    Article  CAS  Google Scholar 

  23. Zhao, C. et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 105, 587–597 (2001).

    Article  CAS  Google Scholar 

  24. Hurd, D.D. & Saxton, W.M. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144, 1075–1085 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goldstein, L.S. & Yang, Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39–71 (2000).

    Article  CAS  Google Scholar 

  26. Jacob, T.C. & Kaplan, J.M. The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. J. Neurosci. 23, 2122–2130 (2003).

    Article  CAS  Google Scholar 

  27. Rao, S., Lang, C., Levitan, E.S. & Deitcher, D.L. Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. J. Neurobiol. 49, 159–172 (2001).

    Article  CAS  Google Scholar 

  28. Murthy, M., Garza, D., Scheller, R.H. & Schwarz, T.L. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433–447 (2003).

    Article  CAS  Google Scholar 

  29. Lin, D.M. & Goodman, C.S. Ectopic and increased expression of fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523 (1994).

    Article  CAS  Google Scholar 

  30. Burgess, R.W., Deitcher, D.L. & Schwarz, T.L. The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J. Cell Biol. 138, 861–875 (1997).

    Article  CAS  Google Scholar 

  31. Glater, E.E., Megeath, L.J., Stowers, R.S. & Schwarz, T.L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173, 545–557 (2006).

    Article  CAS  Google Scholar 

  32. Pilling, A.D., Horiuchi, D., Lively, C.M. & Saxton, W.M. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17, 2057–2068 (2006).

    Article  CAS  Google Scholar 

  33. Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G.W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26, 371–382 (2000).

    Article  CAS  Google Scholar 

  34. Ma, D., Himes, B.T., Shea, T.B. & Fischer, I. Axonal transport of microtubule-associated protein 1B (MAP1B) in the sciatic nerve of adult rat: distinct transport rates of different isoforms. J. Neurosci. 20, 2112–2120 (2000).

    Article  CAS  Google Scholar 

  35. Schwarz, T.L. Transmitter release at the neuromuscular junction. Int. Rev. Neurobiol. 75, 105–144 (2006).

    Article  CAS  Google Scholar 

  36. Wagh, D.A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006).

    Article  CAS  Google Scholar 

  37. Broadie, K. et al. Syntaxin and synaptohrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673 (1995).

    Article  CAS  Google Scholar 

  38. Featherstone, D.E., Rushton, E. & Broadie, K. Developmental regulation of glutamate receptor field size by nonvesicular glutamate release. Nat. Neurosci. 5, 141–146 (2002).

    Article  CAS  Google Scholar 

  39. DiAntonio, A. Glutamate receptors at the Drosophila neuromuscular junction. Int. Rev. Neurobiol. 75, 165–179 (2006).

    Article  CAS  Google Scholar 

  40. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  Google Scholar 

  41. Marques, G. & Zhang, B. Retrograde signaling that regulates synaptic development and function at the Drosophila neuromuscular junction. Int. Rev. Neurobiol. 75, 267–285 (2006).

    Article  CAS  Google Scholar 

  42. Shen, K., Fetter, R.D. & Bargmann, C.I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116, 869–881 (2004).

    Article  CAS  Google Scholar 

  43. Ackley, B.D. & Jin, Y. Genetic analysis of synaptic target recognition and assembly. Trends Neurosci. 27, 540–547 (2004).

    Article  CAS  Google Scholar 

  44. Dickman, D.K., Lu, Z., Meinertzhagen, I.A. & Schwarz, T.L. Altered synaptic development and active zone spacing in endocytosis mutants. Curr. Biol. 16, 591–598 (2006).

    Article  CAS  Google Scholar 

  45. Klopfenstein, D.R., Tomishige, M., Stuurman, N. & Vale, R.D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    Article  CAS  Google Scholar 

  46. Sato-Yoshitake, R., Yorifuji, H., Inagaki, M. & Hirokawa, N. The phosphorylation of kinesin regulates its binding to synaptic vesicles. J. Biol. Chem. 267, 23930–23936 (1992).

    CAS  PubMed  Google Scholar 

  47. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  48. Miller, K.E. et al. Direct observation demonstrates that Liprin-α is required for trafficking of synaptic vesicles. Curr. Biol. 15, 684–689 (2005).

    Article  CAS  Google Scholar 

  49. Saitoe, M., Schwarz, T.L., Umbach, J.A., Gundersen, C.B. & Kidokoro, Y. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release. Science 293, 514–517 (2001).

    Article  CAS  Google Scholar 

  50. Prokop, A. & Technau, G.M. in Cellular Interactions in Development: A Practical Approach (ed. Hartley, D.) 33–57 (Oxford Univ. Press, London and New York, 1993).

    Google Scholar 

Download references

Acknowledgements

We thank W. Saxton, D. Van Vactor and J. Kaplan for comments on the manuscript; A. DiAntonio, R. Palmer, N. Reist, M. Higashi, and the Bloomington Stock Center for reagents and fly strains; A.Y.N. Goldstein and J. Salogiannis for experimental assistance; members of the Schwarz laboratory for discussions; HCNR and DDRC imaging cores for imaging and analysis assistance; A. Prokop and the HMS electron microscopy facility for electron microscopy help. This work was supported by a US National Research Service Award predoctoral fellowship (E.P.-C.), a Howard Hughes Medical Institute predoctoral fellowship (D.K.D.), and a grant from the US National Institutes of Health (RO1-MH075058 to T.L.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L Schwarz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Table 1, Methods (PDF 9697 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pack-Chung, E., Kurshan, P., Dickman, D. et al. A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nat Neurosci 10, 980–989 (2007). https://doi.org/10.1038/nn1936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing