Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Action potential generation requires a high sodium channel density in the axon initial segment

Abstract

The axon initial segment (AIS) is a specialized region in neurons where action potentials are initiated. It is commonly assumed that this process requires a high density of voltage-gated sodium (Na+) channels. Paradoxically, the results of patch-clamp studies suggest that the Na+ channel density at the AIS is similar to that at the soma and proximal dendrites. Here we provide data obtained by antibody staining, whole-cell voltage-clamp and Na+ imaging, together with modeling, which indicate that the Na+ channel density at the AIS of cortical pyramidal neurons is 50 times that in the proximal dendrites. Anchoring of Na+ channels to the cytoskeleton can explain this discrepancy, as disruption of the actin cytoskeleton increased the Na+ current measured in patches from the AIS. Computational models required a high Na+ channel density (2,500 pS μm−2) at the AIS to account for observations on action potential generation and backpropagation. In conclusion, action potential generation requires a high Na+ channel density at the AIS, which is maintained by tight anchoring to the actin cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Divergence of AIS Na+ channel density estimates using cell-attached recording and Na+ channel antibody staining.
Figure 2: Comparison of AIS and proximal apical dendritic whole-cell Na+ current indicates a high Na+ channel density in the AIS.
Figure 3: Changes in intracellular Na+ during action potentials are largest in the AIS.
Figure 4: The actin cytoskeleton influences AIS Na+ channel density and action potential properties.
Figure 5: Simulation of axonal action potential rate-of-rise requires a high Na+ channel density in the AIS.
Figure 6: Simulation of action potential initiation and backpropagation requires a high Na+ channel density in the AIS.

Similar content being viewed by others

References

  1. Coombs, J.S., Curtis, D.R. & Eccles, J.C. The generation of impulses in motoneurones. J. Physiol. (Lond.) 139, 232–249 (1957).

    Article  CAS  Google Scholar 

  2. Fatt, P. Sequence of events in synaptic activation of a motoneurone. J. Neurophysiol. 20, 61–80 (1957).

    Article  CAS  Google Scholar 

  3. Fuortes, M.G.F., Frank, K. & Becker, M.C. Steps in the production of motoneuron spikes. J. Gen. Physiol. 40, 735–752 (1957).

    Article  CAS  Google Scholar 

  4. Eccles, J.C. The Physiology of Synapses (Springer, Berlin, 1964).

    Book  Google Scholar 

  5. Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  CAS  Google Scholar 

  6. Stuart, G. & Hausser, M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13, 703–712 (1994).

    Article  CAS  Google Scholar 

  7. Colbert, C.M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).

    Article  CAS  Google Scholar 

  8. Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 617–632 (1997).

    Article  CAS  Google Scholar 

  9. Clark, B.A., Monsivais, P., Branco, T., London, M. & Hausser, M. The site of action potential initiation in cerebellar Purkinje neurons. Nat. Neurosci. 8, 137–139 (2005).

    Article  CAS  Google Scholar 

  10. Shu, Y., Duque, A., Yu, Y., Haider, B. & McCormick, D.A. Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole-cell axon recordings. J. Neurophysiol. 97, 746–760 (2007).

    Article  Google Scholar 

  11. Meeks, J.P. & Mennerick, S. Action potential initiation and propagation in CA3 pyramidal axons. J. Neurophysiol. 97, 3460–3472 (2007).

    Article  Google Scholar 

  12. Palmer, L.M. & Stuart, G.J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26, 1854–1863 (2006).

    Article  CAS  Google Scholar 

  13. Kole, M.H.P., Letzkus, J.J. & Stuart, G.J. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55, 633–647 (2007).

    Article  CAS  Google Scholar 

  14. Dodge, F.A. & Cooley, J.W. Action potential of the motoneuron. IBM J. Res. Develop. 17, 219–229 (1973).

    Article  Google Scholar 

  15. Moore, J.W., Stockbridge, N. & Westerfield, M. On the site of impulse initiation in a neurone. J. Physiol. (Lond.) 336, 301–311 (1983).

    Article  CAS  Google Scholar 

  16. Mainen, Z.F., Joerges, J., Huguenard, J.R. & Sejnowski, T.J. A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995).

    Article  CAS  Google Scholar 

  17. Rapp, M., Yarom, Y. & Segev, I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11985–11990 (1996).

    Article  CAS  Google Scholar 

  18. Wollner, D.A. & Catterall, W.A. Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. Proc. Natl. Acad. Sci. USA 83, 8424–8428 (1986).

    Article  CAS  Google Scholar 

  19. Zhou, D. et al. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143, 1295–1304 (1998).

    Article  CAS  Google Scholar 

  20. Kordeli, E., Lambert, S. & Bennett, V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270, 2352–2359 (1995).

    Article  CAS  Google Scholar 

  21. Komada, M. & Soriano, P. ßIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J. Cell Biol. 156, 337–348 (2002).

    Article  CAS  Google Scholar 

  22. Boiko, T. et al. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J. Neurosci. 23, 2306–2313 (2003).

    Article  CAS  Google Scholar 

  23. Inda, M.C., DeFelipe, J. & Munoz, A. Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc. Natl. Acad. Sci. USA 103, 2920–2925 (2006).

    Article  CAS  Google Scholar 

  24. Van Wart, A., Trimmer, J.S. & Matthews, G. Polarized distribution of ion channels within microdomains of the axon initial segment. J. Comp. Neurol. 500, 339–352 (2007).

    Article  CAS  Google Scholar 

  25. Colbert, C.M. & Pan, E. Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat. Neurosci. 5, 533–538 (2002).

    Article  CAS  Google Scholar 

  26. Ulbricht, W. Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85, 1271–1301 (2005).

    Article  CAS  Google Scholar 

  27. Lasser-Ross, N. & Ross, W.N. Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells. Proc. Biol. Sci. 247, 35–39 (1992).

    Article  CAS  Google Scholar 

  28. Nakada, C. et al. Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat. Cell Biol. 5, 626–632 (2003).

    Article  CAS  Google Scholar 

  29. Milton, R.L. & Caldwell, J.H. Na current in membrane blebs: implications for channel mobility and patch clamp recording. J. Neurosci. 10, 885–893 (1990).

    Article  CAS  Google Scholar 

  30. Magee, J.C. & Johnston, D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.) 487, 67–90 (1995).

    Article  CAS  Google Scholar 

  31. Shrager, P. Sodium channels in single demyelinated mammalian axons. Brain Res. 483, 149–154 (1989).

    Article  CAS  Google Scholar 

  32. Boiko, T. et al. Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91–104 (2001).

    Article  CAS  Google Scholar 

  33. Kaplan, M.R. et al. Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier. Neuron 30, 105–119 (2001).

    Article  CAS  Google Scholar 

  34. Rush, A.M., Dib-Hajj, S.D. & Waxman, S.G. Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. J. Physiol. (Lond.) 564, 803–815 (2005).

    Article  CAS  Google Scholar 

  35. Komai, S. et al. Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nat. Neurosci. 9, 1125–1133 (2006).

    Article  CAS  Google Scholar 

  36. Peters, A., Proskauer, C.C. & Kaiserman-Abramof, I.R. The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment. J. Cell Biol. 39, 604–619 (1968).

    Article  CAS  Google Scholar 

  37. Winckler, B., Forscher, P. & Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397, 698–701 (1999).

    Article  CAS  Google Scholar 

  38. Garrido, J.J. et al. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300, 2091–2094 (2003).

    Article  CAS  Google Scholar 

  39. Lai, H.C. & Jan, L.Y. The distribution and targeting of neuronal voltage-gated ion channels. Nat. Rev. Neurosci. 7, 548–562 (2006).

    Article  CAS  Google Scholar 

  40. Howard, A., Tamas, G. & Soltesz, I. Lighting the chandelier: new vistas for axo-axonic cells. Trends Neurosci. 28, 310–316 (2005).

    Article  CAS  Google Scholar 

  41. Kuba, H., Ishii, T.M. & Ohmori, H. Axonal site of spike initiation enhances auditory coincidence detection. Nature 444, 1069–1072 (2006).

    Article  CAS  Google Scholar 

  42. Stuart, G.J., Dodt, H.-U. & Sakmann, B. Patch-clamp recordings from the soma and dendrites of neurones in brain slices using infrared video microscopy. Pflugers Arch. 423, 511–518 (1993).

    Article  CAS  Google Scholar 

  43. Carnevale, N.T. & Hines, M.L. The Neuron Book (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  44. Sloper, J.J. & Powell, T.P. A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices. Phil. Trans. R. Soc. Lond. B 285, 173–197 (1979).

    Article  CAS  Google Scholar 

  45. Neumcke, B. & Stämpfli, R. Sodium currents and sodium-current fluctuations in rat myelinated nerve fibres. J. Physiol. (Lond.) 329, 163–184 (1982).

    Article  CAS  Google Scholar 

  46. Baranauskas, G. & Martina, M. Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons. J. Neurosci. 26, 671–684 (2006).

    Article  CAS  Google Scholar 

  47. Taddese, A. & Bean, B.P. Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33, 587–600 (2002).

    Article  CAS  Google Scholar 

  48. Canavier, C.C. Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J. Comput. Neurosci. 6, 49–69 (1999).

    Article  CAS  Google Scholar 

  49. Akemann, W. & Knopfel, T. Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J. Neurosci. 26, 4602–4612 (2006).

    Article  CAS  Google Scholar 

  50. Kole, M.H.P., Hallermann, S. & Stuart, G.J. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J. Neurosci. 26, 1677–1687 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Catterall for the gift of the pan-alpha sodium channel antibody. This work was supported by the Alexander von Humboldt Foundation (G.J.S.) and a NRSA Senior Fellowship (P.C.R.).

Author information

Authors and Affiliations

Authors

Contributions

M.H.P.K. performed the patch and whole-cell current-clamp experiments, as well as simulations, and wrote the paper; S.U.I. performed the antibody experiments; B.M.K. helped with the sodium imaging experiments and performed the associated simulations; S.R.W. and P.C.R. helped with the patch experiments; and G.J.S. performed the whole-cell voltage-clamp and sodium imaging experiments and wrote the paper.

Corresponding author

Correspondence to Greg J Stuart.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Table 1 (PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kole, M., Ilschner, S., Kampa, B. et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11, 178–186 (2008). https://doi.org/10.1038/nn2040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing