Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory

Abstract

N-methyl-d-aspartate (NMDA) receptor–dependent synaptic plasticity in the mammalian hippocampus is essential for learning and memory. Although computational models and anatomical studies have emphasized functional differences among hippocampal subregions, subregional specificity of NMDA receptor function is largely unknown. Here we present evidence that NMDA receptors in CA3 are required in a situation in which spatial representation needs to be reorganized, whereas the NMDA receptors in CA1 and/or the dentate gyrus are more involved in acquiring memory that needs to be retrieved after a delay period exceeding a short-term range. Our data, with data from CA1-specific knockout mice, suggest the possibility of heterogeneous mnemonic function of NMDA receptors in different subregions of the hippocampus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histologically verified cannula placements for the behavioral experiment (CA3-APV, n = 6; CA3-PBS, n = 7; CA1-APV, n = 4; CA1-PBS, n = 4; DG-APV, n = 4 and DG-PBS, n = 4).
Figure 2: Performance in the familiar spatial environment versus the novel spatial environment.
Figure 3: Performance with variable delays in the familiar room.
Figure 4: Selective inhibition of the LTP induction in CA3 with APV injections into the CA3 subregion.
Figure 5: Sustained blockade of LTP induction in CA3 by APV injection into CA3.

Similar content being viewed by others

References

  1. Muller, D., Joly, M. & Lynch, G. Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 23, 1694–1697 (1988).

    Article  Google Scholar 

  2. Collingridge, G. L. & Bliss, T. V. Memories of NMDA receptors and LTP. Trends Neurosci. 18, 54–56 (1995).

    Article  CAS  Google Scholar 

  3. Bannerman, D. M., Good, M. A., Butcher, S. P., Ramsay, M. & Morris, R. G. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378, 182–186 (1995).

    Article  CAS  Google Scholar 

  4. Bolhuis, J. J. & Reid, I. C. Effects of intraventricular infusion of the N-methyl-d-aspartate (NMDA) receptor antagonist AP5 on spatial memory of rats in a radial arm maze. Behav. Brain Res. 47, 151–157 (1992).

    Article  CAS  Google Scholar 

  5. Kawabe, K., Ichitani, Y. & Iwasaki, T. Effects of intrahippocampal AP5 treatment on radial-arm maze performance in rats. Brain Res. 19, 300–306 (1998).

    Article  Google Scholar 

  6. Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  Google Scholar 

  7. Huerta, P. T., Sun, L. D., Wilson, M. A. & Tonegawa, S. Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron 25, 473–480 (2000).

    Article  CAS  Google Scholar 

  8. McHugh, T. J., Blum, K. I., Tsien, J. Z., Tonegawa, S. & Wilson, M. A. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 27, 1339–1349 (1996).

    Article  Google Scholar 

  9. Shimizu, E., Tang, Y. P., Rampon, C. & Tsien, J. Z. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290, 1170–1174 (2000).

    Article  CAS  Google Scholar 

  10. Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  Google Scholar 

  11. Treves, A. & Rolls, E. T. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2, 189–200 (1992).

    Article  CAS  Google Scholar 

  12. Granger, R., Wiebe, S. P., Taketani, M. & Lynch, G. Distinct memory circuits composing the hippocampal region. Hippocampus 6, 567–578 (1996).

    Article  CAS  Google Scholar 

  13. O'Reilly, R. C. & McClelland, J. L. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4, 661–682 (1994).

    Article  CAS  Google Scholar 

  14. Wiebe, S. P., Staubli, U. V. & Ambros-Ingerson, J. Short-term reverberant memory model of hippocampal field CA3. Hippocampus 7, 656–665 (1997).

    Article  CAS  Google Scholar 

  15. Kesner, R. P., Gilbert, P. E. & Wallenstein, G. V. Testing neural network models of memory with behavioral experiments. Curr. Opin. Neurobiol. 10, 260–265 (2000).

    Article  CAS  Google Scholar 

  16. Kesner, R. P. & Rolls, E. T. Role of long term synaptic modification in short term memory. Hippocampus 11, 240–250 (2001).

    Article  CAS  Google Scholar 

  17. Bains, J. S., Longacher, J. M. & Staley, K. J. Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses. Nat. Neurosci. 2, 720–726 (1999).

    Article  CAS  Google Scholar 

  18. Adams, M. M. et al. Hippocampal dependent learning ability correlates with N-methyl-D-aspartate (NMDA) receptor levels in CA3 neurons of young and aged rats. J. Comp. Neurol. 432, 230–243 (2001).

    Article  CAS  Google Scholar 

  19. Bawin, S. M., Satmary, W. M. & Adey, W. R. Roles of the NMDA and quisqualate/kainate receptors in the induction and expression of kindled bursts in rat hippocampal slices. Epilepsy Res. 15, 7–13 (1993).

    Article  CAS  Google Scholar 

  20. Steele, R. J. & Morris, R. G. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist d-AP5. Hippocampus 9, 118–136 (1999).

    Article  CAS  Google Scholar 

  21. Rawlins, J. N. & Tsaltas, E. The hippocampus, time and working memory. Behav. Brain Res. 10, 233–262 (1983).

    Article  CAS  Google Scholar 

  22. Peinado-Manzano, M. A. The role of the amygdala and the hippocampus in working memory for spatial and non-spatial information. Behav. Brain Res. 7, 117–134 (1990).

    Article  Google Scholar 

  23. Cassel, J. C. et al. Fimbria-fornix vs selective hippocampal lesions in rats: effects on locomotor activity and spatial learning and memory. Neurobiol. Learn. Mem. 69, 22–45 (1998).

    Article  CAS  Google Scholar 

  24. Borroni, A. M., Fichtenholtz, H., Woodside, B. L. & Teyler, T. J. Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory. J. Neurosci. 20, 9272–9276 (2000).

    Article  CAS  Google Scholar 

  25. Caramanos, Z. & Shapiro, M. L. Spatial memory and N-methyl-D-aspartate receptor antagonists APV and MK-801: memory impairments depend on familiarity with the environment, drug dose, and training duration. Behav. Neurosci. 108, 30–43 (1994).

    Article  CAS  Google Scholar 

  26. Hetherington, P. A. & Shapiro, M. L. Hippocampal place fields are altered by the removal of single visual cues in a distance-dependent manner. Behav. Neurosci. 111, 20–34 (1997).

    Article  CAS  Google Scholar 

  27. Kentros, C. et al. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121–2126 (1998).

    Article  CAS  Google Scholar 

  28. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  CAS  Google Scholar 

  29. Markus, E. T. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995).

    Article  CAS  Google Scholar 

  30. Mizumori, S. J. Y., Ragozzino, K. E., Cooper, B. G. & Leutgeb, S. Hippocampal representational organization and spatial context. Hippocampus 9, 444–451 (1999).

    Article  CAS  Google Scholar 

  31. Derrick, B. E., Weinberger, S. B. & Martinez, J. L. Jr. Opioid receptors are involved in an NMDA receptor-independent mechanism of LTP induction at hippocampal mossy fiber-CA3 synapses. Brain Res. Bull. 27, 219–223 (1991).

    Article  CAS  Google Scholar 

  32. Young, S. L., Bohenek, D. L. & Fanselow, M. S. NMDA processes mediate anterograde amnesia of contextual fear conditioning induced by hippocampal damage: immunization against amnesia by context preexposure. Behav. Neurosci. 108, 19–29 (1994).

    Article  CAS  Google Scholar 

  33. Moser, M. B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus 8, 608–619 (1998).

    Article  CAS  Google Scholar 

  34. Moser, M. B. & Moser, E. I. Distributed encoding and retrieval of spatial memory in the hippocampus. J. Neurosci. 18, 7535–7542 (1998).

    Article  CAS  Google Scholar 

  35. Gilbert, P. E., Kesner, R. P. & Lee, I. Dissociating hippocampal subregions: a double dissociation between dentate gyrus and CA1. Hippocampus 11, 626–636 (2001).

    Article  CAS  Google Scholar 

  36. Hampson, R. E., Simeral, J. D. & Deadwyler, S. A. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402, 610–614 (1999).

    Article  CAS  Google Scholar 

  37. Wallenstein, G. V., Eichenbaum, H. & Hasselmo, M. E. The hippocampus as an associator of discontiguous events. Trends Neurosci. 21, 317–323 (1998).

    Article  CAS  Google Scholar 

  38. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, New York, 1997).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Frontier Science Program and NSFIBN 9817583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond P. Kesner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, I., Kesner, R. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci 5, 162–168 (2002). https://doi.org/10.1038/nn790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing